Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Data science is a highly interdisciplinary field, incorporating ideas from applied mathematics, statistics, probability, and computer science, as well as many other areas. This book gives an introduction to the mathematical methods that form the foundations of machine learning and data science, presented by leading experts in computer science, statistics, and applied mathematics. Although the chapters can be read independently, they are designed to be read together as they lay out algorithmic, statistical, and numerical approaches in diverse but complementary ways. This book can be used both as a text for advanced undergraduate and beginning graduate courses, and as a survey for researchers interested in understanding how applied mathematics broadly defined is being used in data science. It will appeal to anyone interested in the interdisciplinary foundations of machine learning and data science.
Randomized algorithms for very large matrix problems have received a great deal of attention in recent years. Much of this work was motivated by problems in large-scale data analysis, largely since matrices are popular structures with which to model data drawn from a wide range of application domains, and the success of this line of work opens the possibility of performing matrix-based computations with truly massive data sets. Originating within theoretical computer science, this work was subsequently extended and applied in important ways by researchers from numerical linear algebra, statistics, applied mathematics, data analysis, and machine learning, as well as domain scientists. Randomized Algorithms for Matrices and Data provides a detailed overview, appropriate for both students and researchers from all of these areas, of recent work on the theory of randomized matrix algorithms as well as the application of those ideas to the solution of practical problems in large-scale data analysis. By focusing on ubiquitous and fundamental problems such as least-squares approximation and low-rank matrix approximation that have been at the center of recent developments, an emphasis is placed on a few simple core ideas that underlie not only recent theoretical advances but also the usefulness of these algorithmic tools in large-scale data applications.
|
You may like...
|