Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The book gives an accessible account of modern probabilistic methods for analyzing combinatorial structures and algorithms. It will be an useful guide for graduate students and researchers.Special features included: a simple treatment of Talagrand's inequalities and their applications; an overview and many carefully worked out examples of the probabilistic analysis of combinatorial algorithms; a discussion of the "exact simulation" algorithm (in the context of Markov Chain Monte Carlo Methods); a general method for finding asymptotically optimal or near optimal graph colouring, showing how the probabilistic method may be fine-tuned to exploit the structure of the underlying graph; a succinct treatment of randomized algorithms and derandomization techniques.
Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.
The 35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2009) took place at Montpellier (France), June 24-26 2009. About 80 computer scientists from all over the world (Australia, Belgium, Canada, China, Czech Republic, France, Germany, Greece, Israel, Japan, Korea, The Netherlands, Norway, Spain, UK, USA) attended the conference. Since1975,ithastakenplace20timesinGermany,fourtimesinTheNeth- lands, twice in Austria, as well as once in Italy, Slovakia, Switzerland, the Czech Republic, France, Norway, and the UK. The conference aims at uniting theory and practice by demonstrating how graph-theoretic concepts can be applied to various areas in computer science, or by extracting new problems from appli- tions. The goal is to present recent research results and to identify and explore directions of future research. The conference is well-balanced with respect to established researchers and young scientists. There were 69 submissions. Each submission was reviewed by at least three, and on average four, Program Committee members. The Committee decided to accept 28 papers. Due to the competition and the limited schedule, some good papers could not be accepted. Theprogramalsoincludedexcellentinvitedtalks:onegivenbyDanielKralon "AlgorithmsforClassesofGraphswithBoundedExpansion," the otherbyDavid Eppsteinon"Graph-TheoreticSolutionstoComputationalGeometryProblems." The proceedings contains two survey papers on these topics.
The Symposium on Theoretical Aspects of Computer Science (STACS) is alt- nately held in France and in Germany. The conference of March 25 27, 2004 at the Corum, Montpellier was the twenty-?rst in this series. Previous meetings took place in Paris (1984), Saarbruc ] ken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), Wurzburg ] (1993), Caen(1994), Munc ] hen(1995), Grenoble(1996), Lub ] eck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), and Berlin (2003). The symposium looks back at a remarkable tradition of over 20 years. The interest in STACS has been increasing continuously during recent years and has turned it into one of the most signi?cant conferences in theoretical computer science. The STACS 2004 call for papers led to more than 200 submissions from all over the world. Thereviewingprocesswasextremelyhard: morethan800reviewsweredone. We would like to thank the program committee and all external referees for the valuable work they put into the reviewing process of this conference. We had a two-day meeting for the program committee in Montpellier during November 21 22, 2003. Just 54 papers (i.e., 27% of the submissions) could be accepted, as we wanted to keep the conference in its standard format with only two parallel sessions. This strict selection guaranteed the very high scienti?c quality of the conference."
This book constitutes the refereed proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, STACS 2003, held in Berlin, Germany in February/March 2003. The 58 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 253 submissions. The papers address the whole range of theoretical computer science including algorithms and data structures, automata and formal languages, complexity theory, semantics, logic in computer science, as well as current challenges like biological computing, quantum computing, and mobile and net computing.
|
You may like...
|