Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 37 matches in All Departments
Exactly 100 years ago, in 1895, G. de Vries, under the supervision of D.J. Korteweg, defended his thesis on what is now known as the Korteweg-de Vries Equation. They published a joint paper in 1895 in the "Philosophical Magazine", entitled "On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave". In the 1960s research on this and related equations exploded. There are now some 3100 papers in mathematics and physics that contain a mention of the phrase "Korteweg-de Vries equation" in their title or abstract, and there are thousands more in other areas, such as biology, chemistry, electronics, geology, oceanology, meteorology, and so forth. And, of course, the KdV equation is only one of what are now called (Liouville) completely integrable systems. The KdV and its relatives continually turn up in situations when one wishes to incorporate nonlinear and dispersive effects into wave-type phenomena.
Accosiative rings and algebras are very interesting algebraic structures. In a strict sense, the theory of algebras (in particular, noncommutative algebras) originated fromasingleexample, namelythequaternions, createdbySirWilliamR.Hamilton in1843. Thiswasthe?rstexampleofanoncommutative"numbersystem." During thenextfortyyearsmathematiciansintroducedotherexamplesofnoncommutative algebras, began to bring some order into them and to single out certain types of algebras for special attention. Thus, low-dimensional algebras, division algebras, and commutative algebras, were classi?ed and characterized. The ?rst complete results in the structure theory of associative algebras over the real and complex ?elds were obtained by T.Molien, E.Cartan and G.Frobenius. Modern ring theory began when J.H.Wedderburn proved his celebrated cl- si?cation theorem for ?nite dimensional semisimple algebras over arbitrary ?elds. Twenty years later, E.Artin proved a structure theorem for rings satisfying both the ascending and descending chain condition which generalized Wedderburn structure theorem. The Wedderburn-Artin theorem has since become a corn- stone of noncommutative ring theory. The purpose of this book is to introduce the subject of the structure theory of associative rings. This book is addressed to a reader who wishes to learn this topic from the beginning to research level. We have tried to write a self-contained book which is intended to be a modern textbook on the structure theory of associative rings and related structures and will be accessible for independent study.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point"of a Pin'. van GuIik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; ihe Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras .are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
This second volume of this text covers the classical aspects of the theory of groups and their representations. It also offers a general introduction to the modern theory of representations including the representations of quivers and finite partially ordered sets and their applications to finite dimensional algebras. It reviews key recent developments in the theory of special ring classes including Frobenius, quasi-Frobenius, and others.
Bifurcation theory has made a very fast upswing in the last fifteen years. Roughly speaking it generalises to dynamic systems the pos sibility of mUltiple solutions, a possibility already recognised in static systems - physical, chemical, social - when operating far from their equilibrium states. It so happened that quite a few staff members of the Erasmus University Rotterdam were thinking along those lines about certain aspects of their disciplines. To have a number of specialists and potential "fans" convene to discuss various aspects of bifurcation al thinking, seemed a natural development. The resulting papers were judged to be of interest to a larger public, and as such are logically regrouped in this volume, one in a series of studies resulting from the activities of the Steering Committee on Interdisciplinary Studies of the Erasmus University, Rotterdam. Although the volume is perhaps multidisciplinary rather than interdisciplinary - the interdisciplinary aspect being only "latent" -, as a "soft" interdisciplinary exercise (the application of formal structures of one discipline to another) it has a right to interdisciplinary existence This book could not have been published without a generous grant of the University Foundation of the Erasmus University Rotterdam, which allowed the conference to be held and the resulting papers to be published; that generosity is gratefully acknowledged."
In the last five years or so there has been an important renaissance in the area of (mathematical) modeling, identification and (stochastic) control. It was the purpose of the Advanced Study Institute of which the present volume constitutes the proceedings to review recent developments in this area with par ticular emphasis on identification and filtering and to do so in such a manner that the material is accessible to a wide variety of both embryo scientists and the various breeds of established researchers to whom identification, filtering, etc. are important (such as control engineers, time series analysts, econometricians, probabilists, mathematical geologists, and various kinds of pure and applied mathematicians; all of these were represented at the ASI). For these proceedings we have taken particular care to see to it that the material presented will be understandable for a quite diverse audience. To that end we have added a fifth tutorial section (besides the four presented at the meeting) and have also included an extensive introduction which explains in detail the main problem areas and themes of these proceedings and which outlines how the various contributions fit together to form a coherent, integrated whole. The prerequisites needed to understand the material in this volume are modest and most graduate students in e. g. mathematical systems theory, applied mathematics, econo metrics or control engineering will qualify."
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth century. This volume is a continuation and an in-depth study, stressing the non-commutative nature of the first two volumes of Algebras, Rings and Modules by M. Hazewinkel, N. Gubareni, and V. V. Kirichenko. It is largely independent of the other volumes. The relevant constructions and results from earlier volumes have been presented in this volume.
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth century. This is the second volume of Algebras, Rings and Modules: Non-commutative Algebras and Rings by M. Hazewinkel and N. Gubarenis, a continuation stressing the more important recent results on advanced topics of the structural theory of associative algebras, rings and modules.
This volume is a result of a meeting which took place in June 1986 at 'll Ciocco" in Italy entitled 'Deformation theory of algebras and structures and applications'. It appears somewhat later than is perhaps desirable for a volume resulting from a summer school. In return it contains a good many results which were not yet available at the time of the meeting. In particular it is now abundantly clear that the Deformation theory of algebras is indeed central to the whole philosophy of deformations/perturbations/stability. This is one of the main results of the 254 page paper below (practically a book in itself) by Gerstenhaber and Shack entitled "Algebraic cohomology and defor mation theory". Two of the main philosphical-methodological pillars on which deformation theory rests are the fol lowing * (Pure) To study a highly complicated object, it is fruitful to study the ways in which it can arise as a limit of a family of simpler objects: "the unraveling of complicated structures" . * (Applied) If a mathematical model is to be applied to the real world there will usually be such things as coefficients which are imperfectly known. Thus it is important to know how the behaviour of a model changes as it is perturbed (deformed).
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathematics. It is a translation with updates and editorial comments of the Soviet Mathematical En cyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977 - 1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivision has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathe matics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, engineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth century. This volume is a continuation and an in-depth study, stressing the non-commutative nature of the first two volumes of Algebras, Rings and Modules by M. Hazewinkel, N. Gubareni, and V. V. Kirichenko. It is largely independent of the other volumes. The relevant constructions and results from earlier volumes have been presented in this volume.
Exactly one hundred years ago, in 1895, G. de Vries, under the supervision of D. J. Korteweg, defended his thesis on what is now known as the Korteweg-de Vries Equation. They published a joint paper in 1895 in the Philosophical Magazine, entitled On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave', and, for the next 60 years or so, no other relevant work seemed to have been done. In the 1960s, however, research on this and related equations exploded. There are now some 3100 papers in mathematics and physics that contain a mention of the phrase Korteweg-de Vries equation' in their title or abstract, and there are thousands more in other areas, such as biology, chemistry, electronics, geology, oceanology, meteorology, etc. And, of course, the KdV equation is only one of what are now called (Liouville) completely integrable systems. The KdV and its relatives continually turn up in situations when one wishes to incorporate nonlinear and dispersive effects into wave-type phenomena. This centenary provides a unique occasion to survey as many different aspects of the KdV and related equations. The KdV equation has depth, subtlety, and a breadth of applications that make it a rarity deserving special attention and exposition.
The Indispensable Source of Information for all those who use Mathematics in Their Work... This is undoubtedly the most comprehensive, up-to-date and authoritative mathematics encyclopaedia available today. Translated from the Russian, edited, annotated and updated by about 200 Western mathematicians, all specialists in their respective fields, the 10-volume Encyclopaedia of Mathematics contains nearly 7000 articles together with a wealth of complementary information. Explanations of differences in terminology are of historical interest and help to bridge the gap between Western and Soviet approaches to mathematics. The Encyclopaedia of Mathematics will help you: find the precise definition of a given concept loop up and verify terminology find the precise statement of a theorem reach the information you need via AMS classification number and/or keywords/phrases check the precise names of concepts and theorems find reference literature for a given field find out about applications of a concept and its links with other concepts
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathematics. It is a translation with updates and editorial comments of the Soviet Mathematical En cyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977 - 1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivision has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathe matics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, engineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques."
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques."
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. O. K. Chesterton. The Scandal of Father 'The Hermit Qad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu ik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Bifurcation theory has made a very fast upswing in the last fifteen years. Roughly speaking it generalises to dynamic systems the pos sibility of mUltiple solutions, a possibility already recognised in static systems - physical, chemical, social - when operating far from their equilibrium states. It so happened that quite a few staff members of the Erasmus University Rotterdam were thinking along those lines about certain aspects of their disciplines. To have a number of specialists and potential "fans" convene to discuss various aspects of bifurcation al thinking, seemed a natural development. The resulting papers were judged to be of interest to a larger public, and as such are logically regrouped in this volume, one in a series of studies resulting from the activities of the Steering Committee on Interdisciplinary Studies of the Erasmus University, Rotterdam. Although the volume is perhaps multidisciplinary rather than interdisciplinary - the interdisciplinary aspect being only "latent" -, as a "soft" interdisciplinary exercise (the application of formal structures of one discipline to another) it has a right to interdisciplinary existence This book could not have been published without a generous grant of the University Foundation of the Erasmus University Rotterdam, which allowed the conference to be held and the resulting papers to be published; that generosity is gratefully acknowledged."
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point"of a Pin'. van GuIik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; ihe Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras .are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques."
This volume is a result of a meeting which took place in June 1986 at 'll Ciocco" in Italy entitled 'Deformation theory of algebras and structures and applications'. It appears somewhat later than is perhaps desirable for a volume resulting from a summer school. In return it contains a good many results which were not yet available at the time of the meeting. In particular it is now abundantly clear that the Deformation theory of algebras is indeed central to the whole philosophy of deformations/perturbations/stability. This is one of the main results of the 254 page paper below (practically a book in itself) by Gerstenhaber and Shack entitled "Algebraic cohomology and defor mation theory". Two of the main philosphical-methodological pillars on which deformation theory rests are the fol lowing * (Pure) To study a highly complicated object, it is fruitful to study the ways in which it can arise as a limit of a family of simpler objects: "the unraveling of complicated structures" . * (Applied) If a mathematical model is to be applied to the real world there will usually be such things as coefficients which are imperfectly known. Thus it is important to know how the behaviour of a model changes as it is perturbed (deformed).
In the last five years or so there has been an important renaissance in the area of (mathematical) modeling, identification and (stochastic) control. It was the purpose of the Advanced Study Institute of which the present volume constitutes the proceedings to review recent developments in this area with par ticular emphasis on identification and filtering and to do so in such a manner that the material is accessible to a wide variety of both embryo scientists and the various breeds of established researchers to whom identification, filtering, etc. are important (such as control engineers, time series analysts, econometricians, probabilists, mathematical geologists, and various kinds of pure and applied mathematicians; all of these were represented at the ASI). For these proceedings we have taken particular care to see to it that the material presented will be understandable for a quite diverse audience. To that end we have added a fifth tutorial section (besides the four presented at the meeting) and have also included an extensive introduction which explains in detail the main problem areas and themes of these proceedings and which outlines how the various contributions fit together to form a coherent, integrated whole. The prerequisites needed to understand the material in this volume are modest and most graduate students in e. g. mathematical systems theory, applied mathematics, econo metrics or control engineering will qualify." |
You may like...
People's War - New Light On The Struggle…
Anthea Jeffery
Paperback
(1)
Fred Rogers - A Captivating Guide to the…
Captivating History
Hardcover
|