0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

State-Space Methods for Time Series Analysis - Theory, Applications and Software (Paperback): Jose Casals, Alfredo... State-Space Methods for Time Series Analysis - Theory, Applications and Software (Paperback)
Jose Casals, Alfredo Garcia-Hiernaux, Miguel Jerez, Sonia Sotoca, A. Alexandre Trindade
R1,588 Discovery Miles 15 880 Ships in 10 - 15 working days

The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors' E4 MATLAB (R) toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.

State-Space Methods for Time Series Analysis - Theory, Applications and Software (Hardcover): Jose Casals, Alfredo... State-Space Methods for Time Series Analysis - Theory, Applications and Software (Hardcover)
Jose Casals, Alfredo Garcia-Hiernaux, Miguel Jerez, Sonia Sotoca, A. Alexandre Trindade
R2,955 Discovery Miles 29 550 Ships in 10 - 15 working days

The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors' E4 MATLAB (R) toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Son of Trevor Lynch's White Nationalist…
Trevor Lynch Hardcover R736 Discovery Miles 7 360
Retail Arbitrage - How to Make Money…
Tony Bennis Hardcover R685 Discovery Miles 6 850
Derrida, Literature and War - Absence…
Sean Gaston Hardcover R5,274 Discovery Miles 52 740
Pluralism and Democracy in India…
Wendy Doniger, Martha C. Nussbaum Hardcover R3,850 Discovery Miles 38 500
Why There Is No Poststructuralism in…
Johannes Angermuller Hardcover R3,334 Discovery Miles 33 340
The Fine Print - Dreamland Billionaires…
Lauren Asher Paperback  (3)
R295 R264 Discovery Miles 2 640
Precision Rifle Marksmanship: The…
Frank Galli Paperback R559 Discovery Miles 5 590
Gadarene
Michele Friedman Hardcover R752 Discovery Miles 7 520
Action Shooting Cowboy Style
John Taffin Hardcover R1,463 Discovery Miles 14 630
History of U.S. Table Tennis Volume 18
Tim Boggan Paperback R832 Discovery Miles 8 320

 

Partners