0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (5)
  • -
Status
Brand

Showing 1 - 5 of 5 matches in All Departments

Rule Based Systems for Big Data - A Machine Learning Approach (Hardcover, 1st ed. 2015): Han Liu, Alexander Gegov, Mihaela Cocea Rule Based Systems for Big Data - A Machine Learning Approach (Hardcover, 1st ed. 2015)
Han Liu, Alexander Gegov, Mihaela Cocea
R3,634 R3,268 Discovery Miles 32 680 Save R366 (10%) Ships in 12 - 17 working days

The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.

Granular Computing Based Machine Learning - A Big Data Processing Approach (Hardcover, 1st ed. 2018): Han Liu, Mihaela Cocea Granular Computing Based Machine Learning - A Big Data Processing Approach (Hardcover, 1st ed. 2018)
Han Liu, Mihaela Cocea
R3,820 Discovery Miles 38 200 Ships in 10 - 15 working days

This book explores the significant role of granular computing in advancing machine learning towards in-depth processing of big data. It begins by introducing the main characteristics of big data, i.e., the five Vs-Volume, Velocity, Variety, Veracity and Variability. The book explores granular computing as a response to the fact that learning tasks have become increasingly more complex due to the vast and rapid increase in the size of data, and that traditional machine learning has proven too shallow to adequately deal with big data. Some popular types of traditional machine learning are presented in terms of their key features and limitations in the context of big data. Further, the book discusses why granular-computing-based machine learning is called for, and demonstrates how granular computing concepts can be used in different ways to advance machine learning for big data processing. Several case studies involving big data are presented by using biomedical data and sentiment data, in order to show the advances in big data processing through the shift from traditional machine learning to granular-computing-based machine learning. Finally, the book stresses the theoretical significance, practical importance, methodological impact and philosophical aspects of granular-computing-based machine learning, and suggests several further directions for advancing machine learning to fit the needs of modern industries. This book is aimed at PhD students, postdoctoral researchers and academics who are actively involved in fundamental research on machine learning or applied research on data mining and knowledge discovery, sentiment analysis, pattern recognition, image processing, computer vision and big data analytics. It will also benefit a broader audience of researchers and practitioners who are actively engaged in the research and development of intelligent systems.

Advances in Social Media Analysis (Hardcover, 2015 ed.): Mohamed Medhat Gaber, Mihaela Cocea, Nirmalie Wiratunga, Ayse Goker Advances in Social Media Analysis (Hardcover, 2015 ed.)
Mohamed Medhat Gaber, Mihaela Cocea, Nirmalie Wiratunga, Ayse Goker
R3,295 Discovery Miles 32 950 Ships in 12 - 17 working days

This volume presents a collection of carefully selected contributions in the area of social media analysis. Each chapter opens up a number of research directions that have the potential to be taken on further in this rapidly growing area of research. The chapters are diverse enough to serve a number of directions of research with Sentiment Analysis as the dominant topic in the book. The authors have provided a broad range of research achievements from multimodal sentiment identification to emotion detection in a Chinese microblogging website. The book will be useful to research students, academics and practitioners in the area of social media analysis.

Advances in Social Media Analysis (Paperback, Softcover reprint of the original 1st ed. 2015): Mohamed Medhat Gaber, Mihaela... Advances in Social Media Analysis (Paperback, Softcover reprint of the original 1st ed. 2015)
Mohamed Medhat Gaber, Mihaela Cocea, Nirmalie Wiratunga, Ayse Goker
R3,196 Discovery Miles 31 960 Ships in 10 - 15 working days

This volume presents a collection of carefully selected contributions in the area of social media analysis. Each chapter opens up a number of research directions that have the potential to be taken on further in this rapidly growing area of research. The chapters are diverse enough to serve a number of directions of research with Sentiment Analysis as the dominant topic in the book. The authors have provided a broad range of research achievements from multimodal sentiment identification to emotion detection in a Chinese microblogging website. The book will be useful to research students, academics and practitioners in the area of social media analysis.  

Rule Based Systems for Big Data - A Machine Learning Approach (Paperback, Softcover reprint of the original 1st ed. 2016): Han... Rule Based Systems for Big Data - A Machine Learning Approach (Paperback, Softcover reprint of the original 1st ed. 2016)
Han Liu, Alexander Gegov, Mihaela Cocea
R3,127 Discovery Miles 31 270 Ships in 10 - 15 working days

The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Bostik Art & Craft Sprayable Adhesive…
R189 R161 Discovery Miles 1 610
Dropout Boogie
Black Keys CD R384 Discovery Miles 3 840
Milex Handheld Vacuum
R592 Discovery Miles 5 920
Clare - The Killing Of A Gentle Activist
Christopher Clark Paperback R360 R309 Discovery Miles 3 090
3:16 - The Numbers Of Hope
Max Lucado Paperback R328 Discovery Miles 3 280
Complete Clumping Cat Litter (10kg)
R151 Discovery Miles 1 510
Raz Tech Laptop Security Chain Cable…
R299 R169 Discovery Miles 1 690
Top Five
Chris Rock, Rosario Dawson, … Blu-ray disc R38 Discovery Miles 380
Huntlea Koletto - Matlow Pet Bed…
R969 R562 Discovery Miles 5 620
Sterile Wound Dressing
R5 Discovery Miles 50

 

Partners