0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Trends in Singularities (Hardcover, 2002 ed.): Anatoly Libgober, Mihai Tibar Trends in Singularities (Hardcover, 2002 ed.)
Anatoly Libgober, Mihai Tibar
R1,543 Discovery Miles 15 430 Ships in 18 - 22 working days

The collection of papers in this volume represents recent advances in the under standing of the geometry and topology of singularities. The book covers a broad range of topics which are in the focus of contemporary singularity theory. Its idea emerged during two Singularities workshops held at the University of Lille (USTL) in 1999 and 2000. Due to the breadth of singularity theory, a single volume can hardly give the complete picture of today's progress. Nevertheless, this collection of papers provides a good snapshot of what is the state of affairs in the field, at the turn of the century. Several papers deal with global aspects of singularity theory. Classification of fam ilies of plane curves with prescribed singularities were among the first problems in algebraic geometry. Classification of plane cubics was known to Newton and classification of quartics was achieved by Klein at the end of the 19th century. The problem of classification of curves of higher degrees was addressed in numerous works after that. In the paper by Artal, Carmona and Cogolludo, the authors de scribe irreducible sextic curves having a singular point of type An (n > 15) and a large (Le. , :::: 18) sum of Milnor numbers of other singularities. They have discov ered many interesting properties of these families. In particular they have found new examples of so-called Zariski pairs, i. e.

Polynomials and Vanishing Cycles (Hardcover, New): Mihai Tibar Polynomials and Vanishing Cycles (Hardcover, New)
Mihai Tibar
R3,412 Discovery Miles 34 120 Ships in 18 - 22 working days

The behaviour of vanishing cycles is the cornerstone for understanding the geometry and topology of families of hypersurfaces, usually regarded as singular fibrations. This self-contained tract proposes a systematic geometro-topological approach to vanishing cycles, especially those appearing in non-proper fibrations, such as the fibration defined by a polynomial function. Topics which have been the object of active research over the past 15 years, such as holomorphic germs, polynomial functions, and Lefschetz pencils on quasi-projective spaces, are here shown in a new light: conceived as aspects of a single theory with vanishing cycles at its core. Throughout the book the author presents the current state of the art. Transparent proofs are provided so that non-specialists can use this book as an introduction, but all researchers and graduate students working in differential and algebraic topology, algebraic geometry, and singularity theory will find this book of great use.

Trends in Singularities (Paperback, Softcover reprint of the original 1st ed. 2002): Anatoly Libgober, Mihai Tibar Trends in Singularities (Paperback, Softcover reprint of the original 1st ed. 2002)
Anatoly Libgober, Mihai Tibar
R1,398 Discovery Miles 13 980 Ships in 18 - 22 working days

The collection of papers in this volume represents recent advances in the under standing of the geometry and topology of singularities. The book covers a broad range of topics which are in the focus of contemporary singularity theory. Its idea emerged during two Singularities workshops held at the University of Lille (USTL) in 1999 and 2000. Due to the breadth of singularity theory, a single volume can hardly give the complete picture of today's progress. Nevertheless, this collection of papers provides a good snapshot of what is the state of affairs in the field, at the turn of the century. Several papers deal with global aspects of singularity theory. Classification of fam ilies of plane curves with prescribed singularities were among the first problems in algebraic geometry. Classification of plane cubics was known to Newton and classification of quartics was achieved by Klein at the end of the 19th century. The problem of classification of curves of higher degrees was addressed in numerous works after that. In the paper by Artal, Carmona and Cogolludo, the authors de scribe irreducible sextic curves having a singular point of type An (n > 15) and a large (Le. , :::: 18) sum of Milnor numbers of other singularities. They have discov ered many interesting properties of these families. In particular they have found new examples of so-called Zariski pairs, i. e.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The University of Minnesota Alumni…
University of Minnesota Registrar Hardcover R801 Discovery Miles 8 010
Growing Up in San Francisco's Chinatown…
Edmund S. Wong Paperback R517 R486 Discovery Miles 4 860
The Antique Hunter's Guide To Murder
C.L. Miller Paperback R385 R349 Discovery Miles 3 490
A Quiet Man
Tom Wood Paperback R418 R384 Discovery Miles 3 840
The Tiger (student Newspaper), Sept…
Anonymous Hardcover R1,075 Discovery Miles 10 750
The List
Barry Gilder Paperback R305 Discovery Miles 3 050
Understanding Early Childhood Education…
Joanne Ailwood Paperback R1,053 Discovery Miles 10 530
Present Tense
Natalie Conyer Paperback R320 R295 Discovery Miles 2 950
The Illio; 1996(vol 103)
University of Illinois (Urbana-Champa Hardcover R1,015 Discovery Miles 10 150
Fees Must Fall - Student Revolt…
Susan Booysen Paperback  (1)
R420 R388 Discovery Miles 3 880

 

Partners