Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
The dream of mathematical modeling is of systems evolving in a continuous, deterministic, predictable way. Unfortunately continuity is lost whenever the `rules of the game' change, whether a change of behavioural regime, or a change of physical properties. From biological mitosis to seizures. From rattling machine parts to earthquakes. From individual decisions to economic crashes. Where discontinuities occur, determinacy is inevitably lost. Typically the physical laws of such change are poorly understood, and too ill-defined for standard mathematics. Discontinuities offer a way to make the bounds of scientific knowledge a part of the model, to analyse a system with detail and rigour, yet still leave room for uncertainty. This is done without recourse to stochastic modeling, instead retaining determinacy as far as possible, and focussing on the geometry of the many outcomes that become possible when it breaks down. In this book the foundations of `piecewise-smooth dynamics' theory are rejuvenated, given new life through the lens of modern nonlinear dynamics and asymptotics. Numerous examples and exercises lead the reader through from basic to advanced analytical methods, particularly new tools for studying stability and bifurcations. The book is aimed at scientists and engineers from any background with a basic grounding in calculus and linear algebra. It seeks to provide an invaluable resource for modeling discontinuous systems, but also to empower the reader to develop their own novel models and discover as yet unknown phenomena.
This book is aimed at mathematicians, scientists, and engineers, studying models that involve a discontinuity, or studying the theory of nonsmooth systems for its own sake. It is divided in two complementary courses: piecewise smooth flows and maps, respectively. Starting from well known theoretical results, the authors bring the reader into the latest challenges in the field, going through stability analysis, bifurcation, singularities, decomposition theorems and an introduction to kneading theory. Both courses contain many examples which illustrate the theoretical concepts that are introduced.
This volume looks at the study of dynamical systems with discontinuities. Discontinuities arise when systems are subject to switches, decisions, or other abrupt changes in their underlying properties that require a 'non-smooth' definition. A review of current ideas and introduction to key methods is given, with a view to opening discussion of a major open problem in our fundamental understanding of what nonsmooth models are. What does a nonsmooth model represent: an approximation, a toy model, a sophisticated qualitative capturing of empirical law, or a mere abstraction? Tackling this question means confronting rarely discussed indeterminacies and ambiguities in how we define, simulate, and solve nonsmooth models. The author illustrates these with simple examples based on genetic regulation and investment games, and proposes precise mathematical tools to tackle them. The volume is aimed at students and researchers who have some experience of dynamical systems, whether as a modelling tool or studying theoretically. Pointing to a range of theoretical and applied literature, the author introduces the key ideas needed to tackle nonsmooth models, but also shows the gaps in understanding that all researchers should be bearing in mind. Mike Jeffrey is a researcher and lecturer at the University of Bristol with a background in mathematical physics, specializing in dynamics, singularities, and asymptotics.
|
You may like...
|