0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Inhibitory Rules in Data Analysis - A Rough Set Approach (Hardcover, 2009 ed.): Pawel Delimata, Mikhail Ju Moshkov, Zbigniew... Inhibitory Rules in Data Analysis - A Rough Set Approach (Hardcover, 2009 ed.)
Pawel Delimata, Mikhail Ju Moshkov, Zbigniew Suraj
R2,927 Discovery Miles 29 270 Ships in 10 - 15 working days

This monograph is devoted to theoretical and experimental study of inhibitory decision and association rules. Inhibitory rules contain on the right-hand side a relation of the kind "attribut = value." The use of inhibitory rules instead of deterministic (standard) ones allows us to describe more completely infor- tion encoded in decision or information systems and to design classi?ers of high quality. The mostimportantfeatureofthis monographis thatit includesanadvanced mathematical analysis of problems on inhibitory rules. We consider algorithms for construction of inhibitory rules, bounds on minimal complexity of inhibitory rules, and algorithms for construction of the set of all minimal inhibitory rules. We also discuss results of experiments with standard and lazy classi?ers based on inhibitory rules. These results show that inhibitory decision and association rules can be used in data mining and knowledge discovery both for knowledge representation and for prediction. Inhibitory rules can be also used under the analysis and design of concurrent systems. The results obtained in the monograph can be useful for researchers in such areas as machine learning, data mining and knowledge discovery, especially for those who are working in rough set theory, test theory, and logical analysis of data (LAD). The monograph can be used under the creation of courses for graduate students and for Ph.D. studies. TheauthorsofthisbookextendanexpressionofgratitudetoProfessorJanusz Kacprzyk, to Dr. Thomas Ditzinger and to the Studies in Computational Int- ligence sta? at Springer for their support in making this book possible.

Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications (Hardcover, 2008 ed.): Mikhail Ju Moshkov,... Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications (Hardcover, 2008 ed.)
Mikhail Ju Moshkov, Marcin Piliszczuk, Beata Zielosko
R3,019 Discovery Miles 30 190 Ships in 10 - 15 working days

This monograph is devoted to theoretical and experimental study of partial reductsandpartialdecisionrulesonthebasisofthestudyofpartialcovers. The use of partial (approximate) reducts and decision rules instead of exact ones allowsustoobtainmorecompactdescriptionofknowledgecontainedindecision tables, andtodesignmorepreciseclassi?ers. Weconsideralgorithmsforconstructionofpartialreductsandpartialdecision rules, boundsonminimalcomplexityofpartialreductsanddecisionrules, and algorithms for construction of the set of all partial reducts and the set of all irreducible partial decision rules. We discuss results of numerous experiments with randomly generated and real-life decision tables. These results show that partial reducts and decision rules can be used in data mining and knowledge discoverybothforknowledgerepresentationandforprediction. Theresultsobtainedinthe monographcanbe usefulforresearchersinsuch areasasmachinelearning, dataminingandknowledgediscovery, especiallyfor thosewhoareworkinginroughsettheory, testtheoryandLAD(LogicalAnalysis ofData). The monographcan be usedunder the creationofcoursesforgraduates- dentsandforPh. D. studies. An essential part of software used in experiments will be accessible soon in RSES-RoughSetExplorationSystem(InstituteofMathematics, WarsawU- versity, headofproject-ProfessorAndrzejSkowron). We are greatly indebted to Professor Andrzej Skowron for stimulated d- cussionsand varioussupportof ourwork. We aregratefulto ProfessorJanusz Kacprzykforhelpfulsuggestions. Sosnowiec, Poland MikhailJu. Moshkov April2008 MarcinPiliszczuk BeataZielosko Contents Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 PartialCovers, ReductsandDecisionRules . . . . . . . . . . . . . . . . 7 1. 1 PartialCovers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1. 1. 1 MainNotions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1. 1. 2 Known Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1. 1. 3 PolynomialApproximateAlgorithms. . . . . . . . . . . . . . . . . . 10 1. 1. 4 Bounds on C (?)Based on Information about min GreedyAlgorithm Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1. 1. 5 UpperBoundon C (?). . . . . . . . . . . . . . . . . . . . . . . . . . 17 greedy 1. 1. 6 Covers fortheMostPartofSetCoverProblems. . . . . . . . 18 1. 2 PartialTests and Reducts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1. 2. 1 MainNotions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1. 2. 2Relationships betweenPartialCovers and Partial Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1. 2. 3 PrecisionofGreedyAlgorithm. . . . . . . . . . . . . . . . . . . . . . . 24 1. 2. 4 PolynomialApproximateAlgorithms. . . . . . . . . . . . . . . . . . 25 1. 2. 5 Bounds on R (?)Based on Information about min GreedyAlgorithm Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 2. 6 UpperBoundon R (?). . . . . . . . . . . . . . . . . . . . . . . . . . 28 greedy 1. 2. 7 Tests fortheMostPartofBinaryDecisionTables. . . . . . 29 1. 3 PartialDecision Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications (Paperback, Softcover reprint of hardcover... Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications (Paperback, Softcover reprint of hardcover 1st ed. 2008)
Mikhail Ju Moshkov, Marcin Piliszczuk, Beata Zielosko
R2,927 Discovery Miles 29 270 Ships in 10 - 15 working days

This monograph is devoted to theoretical and experimental study of partial reductsandpartialdecisionrulesonthebasisofthestudyofpartialcovers. The use of partial (approximate) reducts and decision rules instead of exact ones allowsustoobtainmorecompactdescriptionofknowledgecontainedindecision tables, andtodesignmorepreciseclassi?ers. Weconsideralgorithmsforconstructionofpartialreductsandpartialdecision rules, boundsonminimalcomplexityofpartialreductsanddecisionrules, and algorithms for construction of the set of all partial reducts and the set of all irreducible partial decision rules. We discuss results of numerous experiments with randomly generated and real-life decision tables. These results show that partial reducts and decision rules can be used in data mining and knowledge discoverybothforknowledgerepresentationandforprediction. Theresultsobtainedinthe monographcanbe usefulforresearchersinsuch areasasmachinelearning, dataminingandknowledgediscovery, especiallyfor thosewhoareworkinginroughsettheory, testtheoryandLAD(LogicalAnalysis ofData). The monographcan be usedunder the creationofcoursesforgraduates- dentsandforPh. D. studies. An essential part of software used in experiments will be accessible soon in RSES-RoughSetExplorationSystem(InstituteofMathematics, WarsawU- versity, headofproject-ProfessorAndrzejSkowron). We are greatly indebted to Professor Andrzej Skowron for stimulated d- cussionsand varioussupportof ourwork. We aregratefulto ProfessorJanusz Kacprzykforhelpfulsuggestions. Sosnowiec, Poland MikhailJu. Moshkov April2008 MarcinPiliszczuk BeataZielosko Contents Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 PartialCovers, ReductsandDecisionRules . . . . . . . . . . . . . . . . 7 1. 1 PartialCovers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1. 1. 1 MainNotions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1. 1. 2 Known Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1. 1. 3 PolynomialApproximateAlgorithms. . . . . . . . . . . . . . . . . . 10 1. 1. 4 Bounds on C (?)Based on Information about min GreedyAlgorithm Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1. 1. 5 UpperBoundon C (?). . . . . . . . . . . . . . . . . . . . . . . . . . 17 greedy 1. 1. 6 Covers fortheMostPartofSetCoverProblems. . . . . . . . 18 1. 2 PartialTests and Reducts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1. 2. 1 MainNotions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1. 2. 2Relationships betweenPartialCovers and Partial Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1. 2. 3 PrecisionofGreedyAlgorithm. . . . . . . . . . . . . . . . . . . . . . . 24 1. 2. 4 PolynomialApproximateAlgorithms. . . . . . . . . . . . . . . . . . 25 1. 2. 5 Bounds on R (?)Based on Information about min GreedyAlgorithm Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 2. 6 UpperBoundon R (?). . . . . . . . . . . . . . . . . . . . . . . . . . 28 greedy 1. 2. 7 Tests fortheMostPartofBinaryDecisionTables. . . . . . 29 1. 3 PartialDecision Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inhibitory Rules in Data Analysis - A Rough Set Approach (Paperback, Softcover reprint of hardcover 1st ed. 2009): Pawel... Inhibitory Rules in Data Analysis - A Rough Set Approach (Paperback, Softcover reprint of hardcover 1st ed. 2009)
Pawel Delimata, Mikhail Ju Moshkov, Zbigniew Suraj
R2,927 Discovery Miles 29 270 Ships in 10 - 15 working days

This monograph is devoted to theoretical and experimental study of inhibitory decision and association rules. Inhibitory rules contain on the right-hand side a relation of the kind "attribut = value." The use of inhibitory rules instead of deterministic (standard) ones allows us to describe more completely infor- tion encoded in decision or information systems and to design classi?ers of high quality. The mostimportantfeatureofthis monographis thatit includesanadvanced mathematical analysis of problems on inhibitory rules. We consider algorithms for construction of inhibitory rules, bounds on minimal complexity of inhibitory rules, and algorithms for construction of the set of all minimal inhibitory rules. We also discuss results of experiments with standard and lazy classi?ers based on inhibitory rules. These results show that inhibitory decision and association rules can be used in data mining and knowledge discovery both for knowledge representation and for prediction. Inhibitory rules can be also used under the analysis and design of concurrent systems. The results obtained in the monograph can be useful for researchers in such areas as machine learning, data mining and knowledge discovery, especially for those who are working in rough set theory, test theory, and logical analysis of data (LAD). The monograph can be used under the creation of courses for graduate students and for Ph.D. studies. TheauthorsofthisbookextendanexpressionofgratitudetoProfessorJanusz Kacprzyk, to Dr. Thomas Ditzinger and to the Studies in Computational Int- ligence sta? at Springer for their support in making this book possible.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Philips TAUE101 Wired In-Ear Headphones…
R199 R129 Discovery Miles 1 290
Fast & Furious: 8-Film Collection
Vin Diesel, Paul Walker, … Blu-ray disc R336 R257 Discovery Miles 2 570
Moonology Diary 2025
Yasmin Boland Paperback R464 R374 Discovery Miles 3 740
Bvlgari Aqua Marine Eau De Toilette…
R1,845 Discovery Miles 18 450
Finally Enough Love - #1's Remixed
Madonna CD  (2)
R403 Discovery Miles 4 030
CoolKids Digital Mid-size 30M WR Watch…
R176 Discovery Miles 1 760
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter Paperback R160 R125 Discovery Miles 1 250
Dig & Discover: Dinosaurs - Excavate 2…
Hinkler Pty Ltd Kit R250 Discovery Miles 2 500
Bug-A-Salt 3.0 Black Fly
 (3)
R999 R749 Discovery Miles 7 490
Xbox One Replacement Case
 (8)
R53 Discovery Miles 530

 

Partners