Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.
"This book revives and vastly expands the classical theory of resultants and discriminants. Most of the main new results of the book have been published earlier in more than a dozen joint papers of the authors. The book nicely complements these original papers with many examples illustrating both old and new results of the theory." Mathematical Reviews
This monograph initiates a theory of new categorical structures that generalize the simplicial Segal property to higher dimensions. The authors introduce the notion of a d-Segal space, which is a simplicial space satisfying locality conditions related to triangulations of d-dimensional cyclic polytopes. Focus here is on the 2-dimensional case. Many important constructions are shown to exhibit the 2-Segal property, including Waldhausen's S-construction, Hecke-Waldhausen constructions, and configuration spaces of flags. The relevance of 2-Segal spaces in the study of Hall and Hecke algebras is discussed. Higher Segal Spaces marks the beginning of a program to systematically study d-Segal spaces in all dimensions d. The elementary formulation of 2-Segal spaces in the opening chapters is accessible to readers with a basic background in homotopy theory. A chapter on Bousfield localizations provides a transition to the general theory, formulated in terms of combinatorial model categories, that features in the main part of the book. Numerous examples throughout assist readers entering this exciting field to move toward active research; established researchers in the area will appreciate this work as a reference.
These are notes from a graduate student course on algebraic topology and K-theory given by Daniel Quillen at the Massachusetts Institute of Technology during 1979-1980. He had just received the Fields Medal for his work on these topics among others and was funny and playful with a confident humility from the start. These are not meant to be polished lecture notes, rather, things are presented as did Quillen reflected in the hand-written notes, resisting any temptation to change or add notation, details or elaborations. Indeed, the text is faithful to Quillen's own exposition, even respecting the {\sl board-like presentation} of formulae, diagrams and proofs, omitting numbering theorems in favor of names and so on. This is meant to be Quillen on Quillen as it happened forty years ago, an informal text for a second-semester graduate student on topology, category theory and K-theory, a potential preface to studying Quillen's own landmark papers and an informal glimpse of his great mind. The intellectual pace of the lectures, namely fast and lively, is Quillen himself, and part of the point here is to capture some of this intimacy. To be sure, much has happened since then from this categorical perspective started by Grothendieck, and Misha Kapranov has contributed an Afterword in order to make it more useful to current students.
|
You may like...
|