Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course.Just as with the first three editions, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible to the talented and hardworking undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings, Eulerian and Hamiltonian cycles, and planar graphs.New to this edition are the Quick Check exercises at the end of each section. In all, the new edition contains about 240 new exercises. Extra examples were added to some sections where readers asked for them.The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, the theory of designs, enumeration under group action, generating functions of labeled and unlabeled structures and algorithms and complexity.The book encourages students to learn more combinatorics, provides them with a not only useful but also enjoyable and engaging reading.The Solution Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected] previous edition of this textbook has been adopted at various schools including UCLA, MIT, University of Michigan, and Swarthmore College. It was also translated into Korean.
A CHOICE "Outstanding Academic Title," the first edition of this bestseller was lauded for its detailed yet engaging treatment of permutations. Providing more than enough material for a one-semester course, Combinatorics of Permutations, third edition continues to clearly show the usefulness of this subject for both students and researchers. The research in combinatorics of permutations has advanced rapidly since this book was published in a first edition. Now the third edition offers not only updated results, it remains the leading textbook for a course on the topic. Coverage is mostly enumerative, but there are algebraic, analytic, and topological parts as well, and applications. Since the publication of the second edition, there is tremendous progress in pattern avoidance (Chapters 4 and 5). There is also significant progress in the analytic combinatorics of permutations, which will be incorporated. *A completely new technique from extremal combinatorics disproved a long-standing conjecture, and this is presented in Chapter 4. *The area of universal permutations has undergone a lot of very recent progress, and that has been noticed outside the academic community as well. This also influenced the revision of Chapter 5. *New results in stack sorting are added to Chapter 8. *Chapter 9 applications to biology has been revised. The author's other works include Introduction to Enumerative and Analytic Combinatorics, second edition (CHOICE "Outstanding Academic Title") and Handbook of Enumerative Combinatorics, published by CRC Press. The author also serves as Series Editor for CRC's Discrete Mathematics and Its Applications.
This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course.Just as with the first two editions, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible to the talented and hardworking undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings, Eulerian and Hamiltonian cycles, and planar graphs.The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, the theory of designs (new to this edition), enumeration under group action (new to this edition), generating functions of labeled and unlabeled structures and algorithms and complexity.As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.The Solution Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected].
This is a textbook for an introductory combinatorics course that can take up one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course. Just as with the first edition, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible for the talented and hard-working undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings and Eulerian and Hamiltonian cycles. The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, and algorithms and complexity. As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.
This is a textbook for an introductory combinatorics course that can take up one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course.Just as with the first edition, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible for the talented and hard-working undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings and Eulerian and Hamiltonian cycles. The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, and algorithms and complexity.As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.
Introduction to Enumerative and Analytic Combinatorics fills the gap between introductory texts in discrete mathematics and advanced graduate texts in enumerative combinatorics. The book first deals with basic counting principles, compositions and partitions, and generating functions. It then focuses on the structure of permutations, graph enumeration, and extremal combinatorics. Lastly, the text discusses supplemental topics, including error-correcting codes, properties of sequences, and magic squares. Strengthening the analytic flavor of the book, this Second Edition: Features a new chapter on analytic combinatorics and new sections on advanced applications of generating functions Demonstrates powerful techniques that do not require the residue theorem or complex integration Adds new exercises to all chapters, significantly extending coverage of the given topics Introduction to Enumerative and Analytic Combinatorics, Second Edition makes combinatorics more accessible, increasing interest in this rapidly expanding field. Outstanding Academic Title of the Year, Choice magazine, American Library Association.
Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods. This important new work is edited by Miklos Bona of the University of Florida where he is a member of the Academy of Distinguished Teaching Scholars. He received his Ph.D. in mathematics at Massachusetts Institute of Technology in 1997. Miklos is the author of four books and more than 65 research articles, including the award-winning Combinatorics of Permutations. Miklos Bona is an editor-in-chief for the Electronic Journal of Combinatorics and Series Editor of the Discrete Mathematics and Its Applications Series for CRC Press/Chapman and Hall. The first two chapters provide a comprehensive overview of the most frequently used methods in combinatorial enumeration, including algebraic, geometric, and analytic methods. These chapters survey generating functions, methods from linear algebra, partially ordered sets, polytopes, hyperplane arrangements, and matroids. Subsequent chapters illustrate applications of these methods for counting a wide array of objects. The contributors for this book represent an international spectrum of researchers with strong histories of results. The chapters are organized so readers advance from the more general ones, namely enumeration methods, towards the more specialized ones. Topics include coverage of asymptotic normality in enumeration, planar maps, graph enumeration, Young tableaux, unimodality, log-concavity, real zeros, asymptotic normality, trees, generalized Catalan paths, computerized enumeration schemes, enumeration of various graph classes, words, tilings, pattern avoidance, computer algebra, and parking functions. This book will be beneficial to a wide audience. It will appeal to experts on the topic interested in learning more about the finer points, readers interested in a systematic and organized treatment of the topic, and novices who are new to the field.
The first half of the book walks the reader through methods of counting, both direct elementary methods and the more advanced method of generating functions. Then, in the second half of the book, the reader learns how to apply these methods to fascinating objects, such as graphs, designs, random variables, partially ordered sets, and algorithms. In short, the first half emphasizes depth by discussing counting methods at length; the second half aims for breadth, by showing how numerous the applications of our methods are.New to this fifth edition of A Walk Through Combinatorics is the addition of Instant Check exercises — more than a hundred in total — which are located at the end of most subsections. As was the case for all previous editions, the exercises sometimes contain new material that was not discussed in the text, allowing instructors to spend more time on a given topic if they wish to do so. With a thorough introduction into enumeration and graph theory, as well as a chapter on permutation patterns (not often covered in other textbooks), this book is well suited for any undergraduate introductory combinatorics class.
From the University of Florida Department of Mathematics, this is the third volume in a three volume presentation of calculus from a concepts perspective. The emphasis is on learning the concepts behind the theories, not the rote completion of problems.
This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course.Just as with the first three editions, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible to the talented and hardworking undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings, Eulerian and Hamiltonian cycles, and planar graphs.New to this edition are the Quick Check exercises at the end of each section. In all, the new edition contains about 240 new exercises. Extra examples were added to some sections where readers asked for them.The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, the theory of designs, enumeration under group action, generating functions of labeled and unlabeled structures and algorithms and complexity.The book encourages students to learn more combinatorics, provides them with a not only useful but also enjoyable and engaging reading.The Solution Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected] previous edition of this textbook has been adopted at various schools including UCLA, MIT, University of Michigan, and Swarthmore College. It was also translated into Korean.
From the University of Florida Department of Mathematics, this is the second volume in a three volume presentation of calculus from a concepts perspective. The emphasis is on learning the concepts behind the theories, not the rote completion of problems.
From the University of Florida Department of Mathematics, this is the first volume in a three volume presentation of calculus from a concepts perspective. The emphasis is on learning the concepts behind the theories, not the rote completion of problems.
This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course.Just as with the first two editions, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible to the talented and hardworking undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings, Eulerian and Hamiltonian cycles, and planar graphs.The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, the theory of designs (new to this edition), enumeration under group action (new to this edition), generating functions of labeled and unlabeled structures and algorithms and complexity.As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.The Solution Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected].
|
You may like...
Miss Peregrine's Home for Peculiar…
Eva Green, Asa Butterfield, …
Blu-ray disc
(1)
R29 Discovery Miles 290
|