![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
Approx.480 pages
This book discusses the various principles in confocal scanning microscopy which has become a useful tool in many practical fields including biological studies and industrial inspection. The methodology presented in this book is unique and is based on the concept of the three-dimensional transfer functions which have been developed by the author and his colleagues over the last five years. With the 3-D transfer functions, resolving power in 3-D confocal imaging can be defined in a unified way, different optical arrangements can be compared with an insight into their inter-relationship, and images of thick objects can be modeled in terms of the Fourier transform which makes the analysis easy. The aim of this book is to provide a systematic introduction to the concept of the 3-D transfer functions in various confocal microscopes, to describe the methods for the derivation of different 3-D transfer functions, and to explain the principles of 3-D confocal imaging in terms of these functions.
Optical microscopy and associated technologies advanced quickly after the introduction of the laser. The techniques have stimulated further development of optical imaging theory, including 3-dimensional microscopy imaging theory in spatial and frequency domains, the theory of imaging with ultrashort-pulse beams and aberration theory for high-numerical-aperture objectives. This book introduces these new theories in terms of modern optical microscopy. It consists of seven chapters including an introduction. The chapters are organized to minimize cross-referencing. Comparisons with classical imaging theory are made when the new imaging theory is introduced. The book is intended for senior undergraduate students in courses on optoelectronics, optical engineering, photonics, biophotonics and applied physics, after they have completed modern optics or a similar subject. It is also a reference for other scientists interested in the field.
This book provides a systematic introduction to the principles of microscopic imaging through tissue-like turbid media in terms of Monte-Carlo simulation. It describes various gating mechanisms based on the physical differences between the un scattered and scattered photons and method for microscopic image reconstruction, using the concept of the effective point spread function. Imaging an object embedded in a turbid medium is a challenging problem in physics as well as in bio photonics. A turbid medium surrounding an object under inspection causes multiple scattering, which degrades the contrast, resolution and signal-to-noise ratio. Biological tissues are typically turbid media. Microscopic imaging through a tissue-like turbid medium can provide higher resolution than transillumination imaging in which no objective is used. This book serves as a valuable reference for engineers and scientists working on microscopy of tissue turbid media.
Optical microscopy and associated technologies have advanced rapidly along with laser technology. These techniques have stimulated further development of the optical imaging theory, including 3-dimensional microscopy imaging theory, the theory of imaging with ultrashort pulsed beam illumination and the aberration theory for high numerical-aperture objectives. This book introduces these new theories in modern optical microscopy, providing comparisons with classical imaging as appropriate.
The introduction of femtosecond pulse lasers has provided numerous new methods for non-destructive diagnostic analysis of biological samples. This book is the first to provide a focused and systematic treatment of femtosecond biophotonic methods. Each chapter combines theory, practice and applications, walking the reader through imaging, manipulation and fabrication techniques. Beginning with an explanation of nonlinear and multiphoton microscopy, subsequent chapters address the techniques for optical trapping and the development of laser tweezers. In a conclusion that brings together the various topics of the book, the authors discuss the growing field of femtosecond micro-engineering. The wide range of applications for femtosecond biophotonics means this book will appeal to researchers and practitioners in the fields of biomedical engineering, biophysics, life sciences and medicine.
|
![]() ![]() You may like...
Beauty And The Beast - Blu-Ray + DVD
Emma Watson, Dan Stevens, …
Blu-ray disc
R313
Discovery Miles 3 130
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|