Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Linear programming attracted the interest of mathematicians during and after World War II when the first computers were constructed and methods for solving large linear programming problems were sought in connection with specific practical problems for example, providing logistical support for the U.S. Armed Forces or modeling national economies. Early attempts to apply linear programming methods to solve practical problems failed to satisfy expectations. There were various reasons for the failure. One of them, which is the central topic of this book, was the inexactness of the data used to create the models. This phenomenon, inherent in most practical problems, has been dealt with in several ways. At first, linear programming models used average values of inherently vague coefficients, but the optimal solutions of these models were not always optimal for the original problem itself. Later researchers developed the stochastic linear programming approach, but this too has its limitations. Recently, interest has been given to linear programming problems with data given as intervals, convex sets and/or fuzzy sets. literature has not presented a unified theory. Linear Optimization Problems with Inexact Data attempts to present a comprehensive treatment of linear optimization with inexact data, summarizing existing results and presenting new ones within a unifying framework.
Linear programming attracted the interest of mathematicians during and after World War II when the first computers were constructed and methods for solving large linear programming problems were sought in connection with specific practical problems for example, providing logistical support for the U.S. Armed Forces or modeling national economies. Early attempts to apply linear programming methods to solve practical problems failed to satisfy expectations. There were various reasons for the failure. One of them, which is the central topic of this book, was the inexactness of the data used to create the models. This phenomenon, inherent in most pratical problems, has been dealt with in several ways. At first, linear programming models used "average" values of inherently vague coefficients, but the optimal solutions of these models were not always optimal for the original problem itself. Later researchers developed the stochastic linear programming approach, but this too has its limitations. Recently, interest has been given to linear programming problems with data given as intervals, convex sets and/or fuzzy sets. The individual results of these studies have been promising, but the literature has not presented a unified theory. Linear Optimization Problems with Inexact Data attempts to present a comprehensive treatment of linear optimization with inexact data, summarizing existing results and presenting new ones within a unifying framework."
Simplex geometry is a topic generalizing geometry of the triangle and tetrahedron. The appropriate tool for its study is matrix theory, but applications usually involve solving huge systems of linear equations or eigenvalue problems, and geometry can help in visualizing the behaviour of the problem. In many cases, solving such systems may depend more on the distribution of non-zero coefficients than on their values, so graph theory is also useful. The author has discovered a method that in many (symmetric) cases helps to split huge systems into smaller parts. Many readers will welcome this book, from undergraduates to specialists in mathematics, as well as non-specialists who only use mathematics occasionally, and anyone who enjoys geometric theorems. It acquaints the reader with basic matrix theory, graph theory and elementary Euclidean geometry so that they too can appreciate the underlying connections between these various areas of mathematics and computer science.
This revised and corrected second edition of a classic book on
special matrices provides researchers in numerical linear algebra
and students of general computational mathematics with an essential
reference.
|
You may like...
|