Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
This visionary and engaging book provides a mathematical perspective on the fundamental ideas of numbers, space, life, evolution, the brain and the mind. The author suggests how a development of mathematical concepts in the spirit of category theory may lead to unravelling the mystery of the human mind and the design of universal learning algorithms. The book is divided into two parts, the first of which describes the ideas of great mathematicians and scientists, those who saw sparks of light in the dark sea of unknown. The second part, Memorandum Ergo, reflects on how mathematics can contribute to the understanding of the mystery of thought. It argues that the core of the human mind is a structurally elaborated object that needs a creation of a broad mathematical context for its understanding. Readers will discover the main properties of the expected mathematical objects within this context, called ERGO-SYSTEMS, and readers will see how these "systems" may serve as prototypes for design of universal learning computer programs. This is a work of great, poetical insight and is richly illustrated. It is a highly attractive read for all those who welcome a mathematical and scientific way of thinking about the world.
Pattern Formation in Morphogenesis is a rich source of interesting and challenging mathematical problems. The volume aims at showing how a combination of new discoveries in developmental biology and associated modelling and computational techniques has stimulated or may stimulate relevant advances in the field. Finally it aims at facilitating the process of unfolding a mutual recognition between Biologists and Mathematicians of their complementary skills, to the point where the resulting synergy generates new and novel discoveries. It offers an interdisciplinary interaction space between biologists from embryology, genetics and molecular biology who present their own work in the perspective of the advancement of their specific fields, and mathematicians who propose solutions based on the knowledge grasped from biologists.
Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: Amoebas and Tropical Geometry These apparently diverse topics have a common feature in that
they are all areas of exciting current activity. The Editors have
attracted an impressive array of leading specialists to author
chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D.
Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko
Honda (USA), P. Ozsvath (USA) and Z. Szabo (USA), C. Simpson
(France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer
(Germany). "One can distinguish various themes running through the
different contributions. There is some emphasis on invariants
defined by elliptic equations and their applications in
low-dimensional topology, symplectic and contact geometry (Bauer,
Seidel, Ozsvath and Szabo). These ideas enter, more tangentially,
in the articles of Joyce, Honda and LeBrun. Here and elsewhere, as
well as explaining the rapid advances that have been made, the
articles convey a wonderful sense of the vast areas lying beyond
our current understanding.
The classical theory of partial differential equations is rooted in physics, where equations (are assumed to) describe the laws of nature. Law abiding functions, which satisfy such an equation, are very rare in the space of all admissible functions (regardless of a particular topology in a function space). Moreover, some additional (like initial or boundary) conditions often insure the uniqueness of solutions. The existence of these is usually established with some apriori estimates which locate a possible solution in a given function space. We deal in this book with a completely different class of partial differential equations (and more general relations) which arise in differential geometry rather than in physics. Our equations are, for the most part, undetermined (or, at least, behave like those) and their solutions are rather dense in spaces of functions. We solve and classify solutions of these equations by means of direct (and not so direct) geometric constructions. Our exposition is elementary and the proofs of the basic results are selfcontained. However, there is a number of examples and exercises (of variable difficulty), where the treatment of a particular equation requires a certain knowledge of pertinent facts in the surrounding field. The techniques we employ, though quite general, do not cover all geometrically interesting equations. The border of the unexplored territory is marked by a number of open questions throughout the book.
This visionary and engaging book provides a mathematical perspective on the fundamental ideas of numbers, space, life, evolution, the brain and the mind. The author suggests how a development of mathematical concepts in the spirit of category theory may lead to unravelling the mystery of the human mind and the design of universal learning algorithms. The book is divided into two parts, the first of which describes the ideas of great mathematicians and scientists, those who saw sparks of light in the dark sea of unknown. The second part, Memorandum Ergo, reflects on how mathematics can contribute to the understanding of the mystery of thought. It argues that the core of the human mind is a structurally elaborated object that needs a creation of a broad mathematical context for its understanding. Readers will discover the main properties of the expected mathematical objects within this context, called ERGO-SYSTEMS, and readers will see how these "systems" may serve as prototypes for design of universal learning computer programs. This is a work of great, poetical insight and is richly illustrated. It is a highly attractive read for all those who welcome a mathematical and scientific way of thinking about the world.
Pattern Formation in Morphogenesis is a rich source of interesting and challenging mathematical problems. The volume aims at showing how a combination of new discoveries in developmental biology and associated modelling and computational techniques has stimulated or may stimulate relevant advances in the field. Finally it aims at facilitating the process of unfolding a mutual recognition between Biologists and Mathematicians of their complementary skills, to the point where the resulting synergy generates new and novel discoveries. It offers an interdisciplinary interaction space between biologists from embryology, genetics and molecular biology who present their own work in the perspective of the advancement of their specific fields, and mathematicians who propose solutions based on the knowledge grasped from biologists.
This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the College de France in Paris. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.
Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: Amoebas and Tropical Geometry Convex Geometry and Asymptotic Geometric Analysis Differential Topology of 4-Manifolds 3-Dimensional Contact Geometry Floer Homology and Low-Dimensional Topology Kahler Geometry Lagrangian and Special Lagrangian Submanifolds Refined Seiberg-Witten Invariants. These apparently diverse topics have a common feature in that they are all areas of exciting current activity. The Editors have attracted an impressive array of leading specialists to author chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D. Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko Honda (USA), P. Ozsvath (USA) and Z. Szabo (USA), C. Simpson (France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer (Germany). "One can distinguish various themes running through the different contributions. There is some emphasis on invariants defined by elliptic equations and their applications in low-dimensional topology, symplectic and contact geometry (Bauer, Seidel, Ozsvath and Szabo). These ideas enter, more tangentially, in the articles of Joyce, Honda and LeBrun. Here and elsewhere, as well as explaining the rapid advances that have been made, the articles convey a wonderful sense of the vast areas lying beyond our current understanding. Simpson's article emphasizes the need for interesting new constructions (in that case of Kahler and algebraic manifolds), a point which is also made by Bauer in the context of 4-manifolds and the "11/8 conjecture". LeBrun's article gives another perspective on 4-manifold theory, via Riemannian geometry, and the challenging open questions involving the geometry of even "well-known" 4-manifolds. There are also striking contrasts between the articles. The authors have taken different approaches: for example, the thoughtful essay of Simpson, the new research results of LeBrun and the thorough expositions with homework problems of Honda. One can also ponder the differences in the style of mathematics. In the articles of Honda, Giannopoulos and Milman, and Mikhalkin, the "geometry" is present in a very vivid and tangible way; combining respectively with topology, analysis and algebra. The papers of Bauer and Seidel, on the other hand, makes the point that algebraic and algebro-topological abstraction (triangulated categories, spectra) can play an important role in very unexpected ways in concrete geometric problems." - From the Preface by the Editors
The classical theory of partial differential equations is rooted in physics, where equations (are assumed to) describe the laws of nature. Law abiding functions, which satisfy such an equation, are very rare in the space of all admissible functions (regardless of a particular topology in a function space). Moreover, some additional (like initial or boundary) conditions often insure the uniqueness of solutions. The existence of these is usually established with some apriori estimates which locate a possible solution in a given function space. We deal in this book with a completely different class of partial differential equations (and more general relations) which arise in differential geometry rather than in physics. Our equations are, for the most part, undetermined (or, at least, behave like those) and their solutions are rather dense in spaces of functions. We solve and classify solutions of these equations by means of direct (and not so direct) geometric constructions. Our exposition is elementary and the proofs of the basic results are selfcontained. However, there is a number of examples and exercises (of variable difficulty), where the treatment of a particular equation requires a certain knowledge of pertinent facts in the surrounding field. The techniques we employ, though quite general, do not cover all geometrically interesting equations. The border of the unexplored territory is marked by a number of open questions throughout the book.
"Visions in Mathematics - Towards 2000" was one of the most remarkable mathematical meetings in recent years. It was held in Tel Aviv from August 25th to September 3rd, 1999, and united some of the leading mathematicians worldwide. The goals of the conference were to discuss the importance, the methods, the past and the future of mathematics as we enter the 21st century and to consider the connection between mathematics and related areas. The aims of the conference are reflected in the present set of survey articles, documenting the state of art and future prospects in many branches of mathematics of current interest. This is the first part of a two-volume set that will serve any research mathematician or advanced student as an overview and guideline through the multifaceted body of mathematical research in the present and near future.
"Visions in Mathematics - Towards 2000" was one of the most remarkable mathematical meetings in recent years. It was held in Tel Aviv from August 25th to September 3rd, 1999, and united some of the leading mathematicians worldwide. The goals of the conference were to discuss the importance, the methods, the past and the future of mathematics as we enter the 21st century and to consider the connection between mathematics and related areas. The aims of the conference are reflected in the present set of survey articles, documenting the state of art and future prospects in many branches of mathematics of current interest. This is the second part of a two-volume set that will serve any research mathematician or advanced student as an overview and guideline through the multifaceted body of mathematical research in the present and near future.
Half a billion years of evolution have turned the eye into an unbelievable pattern detector. Everything we perceive comes in delightful multicolored forms. Now, in the age of science, we want to comprehend what and why we see. Two dozen outstanding biologists, chemists, physicists, psychologists, computer scientists and mathematicians met at the Institut d'Hautes Etudes Scientifiques in Bures-sur-Yvette, France. They expounded their views on the physical, biological and physiological mechanisms creating the tapestry of patterns we see in molecules, plants, insects, seashells, and even the human brain. This volume comprises surveys of different aspects of pattern formation and recognition, and is aimed at the scientifically minded reader.
|
You may like...
Freedom - Stories Celebrating the…
Amnesty International USA
Paperback
|