Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
In this "Tropical Peatland Eco-management" book, eco-management is new terminology as an abbreviation of "ecology-based management for natural capital enhancement". Key concept on this eco-management is derived from previous book: "Tropical Peatland Ecosystem"(Springer, 2015, eds. by M. Osaki and N. Tsuji). Based on this new concept, this book thoroughly examines tropical peatland eco-management for scientists, political decision makers, governmental officials, land managers, students, and NGO/NPOs who are interested in 1) what the impact of peatland on climate change and ecosystem function, 2) how the management of disturbed peatland, and 3) drawing global scale restoration mechanisms of peatland and wetland. In tropical peatland, a large amount of GHGs (carbon dioxide, methane, and nitrous oxide) is emitted due to the unappropriate development and inadequate management of peatland. The peatland ecosystems consist of the carbon-water complex, which is affected easily by the impact of human and climate change. Throughout much research of tropical peatland, the problems that result from development of tropical peatland are found to stem mainly from a lack of understanding of the complexities of this ecosystem and the fragility of the relationship between peat and forest and also between carbon and water. In past, almost all peatland development and management system have been generally designed on "water drainage system". On the contrast of old system, an innovated eco- management is, here, proposed as "water irrigation system", including water cycling and natural capital enhancement. Through this book readers will learn the advanced peatland eco-management, with more practical methods and procedure based on ecosystem knowledge.
This book is an excellent resource for scientists, political decision makers, and students interested in the impact of peatlands on climate change and ecosystem function, containing a plethora of recent research results such as monitoring-sensing-modeling for carbon-water flux/storage, biodiversity and peatland management in tropical regions. It is estimated that more than 23 million hectares (62 %) of the total global tropical peatland area are located in Southeast Asia, in lowland or coastal areas of East Sumatra, Kalimantan, West Papua, Papua New Guinea, Brunei, Peninsular Malaysia, Sabah, Sarawak and Southeast Thailand. Tropical peatland has a vital carbon-water storage function and is host to a huge diversity of plant and animal species. Peatland ecosystems are extremely vulnerable to climate change and the impacts of human activities such as logging, drainage and conversion to agricultural land. In Southeast Asia, severe episodic droughts associated with the El Nino-Southern Oscillation, in combination with over-drainage, forest degradation, and land-use changes, have caused widespread peatland fires and microbial peat oxidation. Indonesia's 20 Mha peatland area is estimated to include about 45-55 GtC of carbon stocks. As a result of land use and development, Indonesia is the third largest emitter of greenhouse gases (2-3 Gtons carbon dioxide equivalent per year), 80 % of which is due to deforestation and peatland loss. Thus, tropical peatlands are key ecosystems in terms of the carbon-water cycle and climate change.
In this "Tropical Peatland Eco-management" book, eco-management is new terminology as an abbreviation of "ecology-based management for natural capital enhancement". Key concept on this eco-management is derived from previous book: "Tropical Peatland Ecosystem"(Springer, 2015, eds. by M. Osaki and N. Tsuji). Based on this new concept, this book thoroughly examines tropical peatland eco-management for scientists, political decision makers, governmental officials, land managers, students, and NGO/NPOs who are interested in 1) what the impact of peatland on climate change and ecosystem function, 2) how the management of disturbed peatland, and 3) drawing global scale restoration mechanisms of peatland and wetland. In tropical peatland, a large amount of GHGs (carbon dioxide, methane, and nitrous oxide) is emitted due to the unappropriate development and inadequate management of peatland. The peatland ecosystems consist of the carbon-water complex, which is affected easily by the impact of human and climate change. Throughout much research of tropical peatland, the problems that result from development of tropical peatland are found to stem mainly from a lack of understanding of the complexities of this ecosystem and the fragility of the relationship between peat and forest and also between carbon and water. In past, almost all peatland development and management system have been generally designed on "water drainage system". On the contrast of old system, an innovated eco- management is, here, proposed as "water irrigation system", including water cycling and natural capital enhancement. Through this book readers will learn the advanced peatland eco-management, with more practical methods and procedure based on ecosystem knowledge.
This book is an excellent resource for scientists, political decision makers, and students interested in the impact of peatlands on climate change and ecosystem function, containing a plethora of recent research results such as monitoring-sensing-modeling for carbon-water flux/storage, biodiversity and peatland management in tropical regions. It is estimated that more than 23 million hectares (62 %) of the total global tropical peatland area are located in Southeast Asia, in lowland or coastal areas of East Sumatra, Kalimantan, West Papua, Papua New Guinea, Brunei, Peninsular Malaysia, Sabah, Sarawak and Southeast Thailand. Tropical peatland has a vital carbon-water storage function and is host to a huge diversity of plant and animal species. Peatland ecosystems are extremely vulnerable to climate change and the impacts of human activities such as logging, drainage and conversion to agricultural land. In Southeast Asia, severe episodic droughts associated with the El Nino-Southern Oscillation, in combination with over-drainage, forest degradation, and land-use changes, have caused widespread peatland fires and microbial peat oxidation. Indonesia's 20 Mha peatland area is estimated to include about 45-55 GtC of carbon stocks. As a result of land use and development, Indonesia is the third largest emitter of greenhouse gases (2-3 Gtons carbon dioxide equivalent per year), 80 % of which is due to deforestation and peatland loss. Thus, tropical peatlands are key ecosystems in terms of the carbon-water cycle and climate change.
This volume focuses on society at the local and regional levels in a scenario where human beings coexist harmoniously with nature. This ideal society is examined in terms of the relationships between villages or towns and their natural environment and how they can achieve independence while facing pressures toward centralization and globalization. Because this requires both food and energy independence, farms, villages, and towns must have access to natural renewable energy and material circulation systems. There also needs to be a system to facilitate collaboration among the various elements. To enable communities to retain their autonomy, public awareness of the importance of fostering local cultures and traditions is vital. Cultural independence demands that local ways of thinking be steered away from the "plunder nature" model toward "coexistence with nature." With economic globalization spearheading a trend toward standardization and uniformity in human values, this book highlights the importance of developing a society in harmony with nature through the networking of diverse communities to promote and achieve local independence.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|