Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Low-Power Digital VLSI Design: Circuits and Systems addresses both process technologies and device modeling. Power dissipation in CMOS circuits, several practical circuit examples, and low-power techniques are discussed. Low-voltage issues for digital CMOS and BiCMOS circuits are emphasized. The book also provides an extensive study of advanced CMOS subsystem design. A low-power design methodology is presented with various power minimization techniques at the circuit, logic, architecture and algorithm levels. Features: Low-voltage CMOS device modeling, technology files, design rules Switching activity concept, low-power guidelines to engineering practice Pass-transistor logic families Power dissipation of I/O circuits Multi- and low-VT CMOS logic, static power reduction circuit techniques State of the art design of low-voltage BiCMOS and CMOS circuits Low-power techniques in CMOS SRAMS and DRAMS Low-power on-chip voltage down converter design Numerous advanced CMOS subsystems (e.g. adders, multipliers, data path, memories, regular structures, phase-locked loops) with several design options trading power, delay and area Low-power design methodology, power estimation techniques Power reduction techniques at the logic, architecture and algorithm levels More than 190 circuits explained at the transistor level.
Since the early-1990s, reducing the dynamic switching power has been the main focus in many of the proposed low-power circuit techniques. At that time, the off-state leakage power was negligible compared to dynamic power. However, as technology scales into the deep-submicron regime, the increase in leakage power can no longer be neglected. Soon, the biggest challenge that SoC designers must resolve is the fact that transistors for digital and memory circuits will be more and more leaky as technology generations advance. The semiconductor industry must therefore reduce leakage current in chip designs by two orders of magnitude over the next ten years, or face an interruption in projected chip complexity. Failure to do so would make the mounting leakage current the big stumbling block to Moore's Law. Furthermore, co-operative approaches between computer-aided design development, circuit design, and technology process must be examined. Multi-threshold voltage CMOS (MTCMOS) technology, that has emerged as an increasingly popular technique to control the escalating leakage power, while maintaining high performance. The book addresses the leakage problem in a number of designs for combinational, sequential, dynamic, and current-steering logic. Moreover, computer-aided design methodologies for designing low-leakage integrated circuits are presented. The book give a survey of state-of-the-art techniques presented in the literature as well as proposed designs that minimize leakage power, while achieving high-performance. Multi-Threshold CMOS Digital Circuits Managing Leakage Power is written for students of VLSI design as well as practicing circuit designers, system designers, CAD tool developers and researchers. It assumes a basic knowledge of digital circuit design and device operation, and covers a broad range of circuit design techniques.
Low-Power Digital VLSI Design: Circuits and Systems addresses both process technologies and device modeling. Power dissipation in CMOS circuits, several practical circuit examples, and low-power techniques are discussed. Low-voltage issues for digital CMOS and BiCMOS circuits are emphasized. The book also provides an extensive study of advanced CMOS subsystem design. A low-power design methodology is presented with various power minimization techniques at the circuit, logic, architecture and algorithm levels. Features: * Low-voltage CMOS device modeling, technology files, design rules * Switching activity concept, low-power guidelines to engineering practice * Pass-transistor logic families * Power dissipation of I/O circuits * Multi- and low-VT CMOS logic, static power reduction circuit techniques * State of the art design of low-voltage BiCMOS and CMOS circuits * Low-power techniques in CMOS SRAMS and DRAMS * Low-power on-chip voltage down converter design * Numerous advanced CMOS subsystems (e.g. adders, multipliers, data path, memories, regular structures, phase-locked loops) with several design options trading power, delay and area * Low-power design methodology, power estimation techniques * Power reduction techniques at the logic, architecture and algorithm levels * More than 190 circuits explained at the transistor level.
This excellent survey of state-of-the-art techniques discusses the MTCMOS technology that has emerged as an increasingly popular technique to control the escalating leakage power, while maintaining high performance. It addresses the leakage problem in a number of designs for combinational, sequential, dynamic and current-steering logic.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|