Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This book presents up-to-date results on abstract evolution equations and differential inclusions in infinite dimensional spaces. It covers equations with time delay and with impulses, and complements the existing literature in functional differential equations and inclusions. The exposition is devoted to both local and global mild solutions for some classes of functional differential evolution equations and inclusions, and other densely and non-densely defined functional differential equations and inclusions in separable Banach spaces or in Frechet spaces. The tools used include classical fixed points theorems and the measure-of non-compactness, and each chapter concludes with a section devoted to notes and bibliographical remarks. This monograph is particularly useful for researchers and graduate students studying pure and applied mathematics, engineering, biology and all other applied sciences.
Topics in Fractional Differential Equationsis devoted to the existence and uniqueness of solutions for various classes of Darboux problems for hyperbolic differential equations or inclusions involving the Caputo fractional derivative. Fractional calculus generalizes the integrals and derivatives to non-integer orders. During the last decade, fractional calculus was found to play a fundamental role in the modeling of a considerable number of phenomena; in particular the modeling of memory-dependent and complex media such as porous media. It has emerged as an important tool for the study of dynamical systems where classical methods reveal strong limitations. Some equations present delays which may be finite, infinite, or state-dependent. Others are subject to an impulsive effect. The above problems are studied using the fixed point approach, the method of upper and lower solution, and the Kuratowski measure of noncompactness. This book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists. "
This book deals with the existence and stability of solutions to initial and boundary value problems for functional differential and integral equations and inclusions involving the Riemann-Liouville, Caputo, and Hadamard fractional derivatives and integrals. A wide variety of topics is covered in a mathematically rigorous manner making this work a valuable source of information for graduate students and researchers working with problems in fractional calculus. Contents Preliminary Background Nonlinear Implicit Fractional Differential Equations Impulsive Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Impulsive NIFDE Integrable Solutions for Implicit Fractional Differential Equations Partial Hadamard Fractional Integral Equations and Inclusions Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions Hadamard-Stieltjes Fractional Integral Equations Ulam Stabilities for Random Hadamard Fractional Integral Equations
This monograph is devoted to the existence and stability (Ulam-Hyers-Rassias stability and asymptotic stability) of solutions for various classes of functional differential equations or inclusions involving the Hadamard or Hilfer fractional derivative. Some equations present delay which may be finite, infinite, or state-dependent. Others are subject to impulsive effect which may be fixed or non-instantaneous.Readers will find the book self-contained and unified in presentation. It provides the necessary background material required to go further into the subject and explores the rich research literature in detail. Each chapter concludes with a section devoted to notes and bibliographical remarks and all abstract results are illustrated by examples. The tools used include many classical and modern nonlinear analysis methods such as fixed-point theorems, as well as some notions of Ulam stability, attractivity and the measure of non-compactness as well as the measure of weak noncompactness. It is useful for researchers and graduate students for research, seminars, and advanced graduate courses, in pure and applied mathematics, physics, mechanics, engineering, biology, and all other applied sciences.
This book presents up-to-date results on abstract evolution equations and differential inclusions in infinite dimensional spaces. It covers equations with time delay and with impulses, and complements the existing literature in functional differential equations and inclusions. The exposition is devoted to both local and global mild solutions for some classes of functional differential evolution equations and inclusions, and other densely and non-densely defined functional differential equations and inclusions in separable Banach spaces or in Fréchet spaces. The tools used include classical fixed points theorems and the measure-of non-compactness, and each chapter concludes with a section devoted to notes and bibliographical remarks. This monograph is particularly useful for researchers and graduate students studying pure and applied mathematics, engineering, biology and all other applied sciences.
Topics in Fractional Differential Equations is devoted to the existence and uniqueness of solutions for various classes of Darboux problems for hyperbolic differential equations or inclusions involving the Caputo fractional derivative. Fractional calculus generalizes the integrals and derivatives to non-integer orders. During the last decade, fractional calculus was found to play a fundamental role in the modeling of a considerable number of phenomena; in particular the modeling of memory-dependent and complex media such as porous media. It has emerged as an important tool for the study of dynamical systems where classical methods reveal strong limitations. Some equations present delays which may be finite, infinite, or state-dependent. Others are subject to an impulsive effect. The above problems are studied using the fixed point approach, the method of upper and lower solution, and the Kuratowski measure of noncompactness. This book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists.
This book covers problems involving a variety of fractional differential equations, as well as some involving the generalized Hilfer fractional derivative, which unifies the Riemann-Liouville and Caputo fractional derivatives. The authors highlight the existence, uniqueness, and stability results for various classes of fractional differential equations based on the most recent research in the area. The book discusses the classic and novel fixed point theorems related to the measure of noncompactness in Banach spaces and explains how to utilize them as tools. The authors build each chapter upon the previous one, helping readers to develop their understanding of the topic. The book includes illustrated results, analysis, and suggestions for further study.
Fractional calculus deals with extensions of derivatives and integrals to non-integer orders. It represents a powerful tool in applied mathematics to study a myriad of problems from different fields of science and engineering, with many break-through results found in mathematical physics, finance, hydrology, biophysics, thermodynamics, control theory, statistical mechanics, astrophysics, cosmology and bioengineering. This book is devoted to the existence and uniqueness of solutions and some Ulam's type stability concepts for various classes of functional differential and integral equations of fractional order. Some equations present delay which may be finite, infinite or state-dependent. Others are subject to multiple time delay effect. The tools used include classical fixed point theorems. Other tools are based on the measure of non-compactness together with appropriates fixed point theorems. Each chapter concludes with a section devoted to notes and bibliographical remarks and all the presented results are illustrated by examples. The content of the book is new and complements the existing literature in Fractional Calculus. It is useful for researchers and graduate students for research, seminars and advanced graduate courses, in pure and applied mathematics, engineering, biology and other applied sciences.
|
You may like...
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
(7)
|