Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
As software and computer hardware grows in complexity, networks have grown to match. The increasing scale, complexity, heterogeneity, and dynamism of communication networks, resources, and applications has made distributed computing systems brittle, unmanageable, and insecure. Internet and Distributed Computing Advancements: Theoretical Frameworks and Practical Applications is a vital compendium of chapters on the latest research within the field of distributed computing, capturing trends in the design and development of Internet and distributed computing systems that leverage autonomic principles and techniques. The chapters provided within this collection offer a holistic approach for the development of systems that can adapt themselves to meet requirements of performance, fault tolerance, reliability, security, and Quality of Service (QoS) without manual intervention.
These proceedings gather outstanding research papers presented at the Second International Conference on Data Engineering 2015 (DaEng-2015) and offer a consolidated overview of the latest developments in databases, information retrieval, data mining and knowledge management. The conference brought together researchers and practitioners from academia and industry to address key challenges in these fields, discuss advanced data engineering concepts and form new collaborations. The topics covered include but are not limited to: * Data engineering * Big data * Data and knowledge visualization * Data management * Data mining and warehousing * Data privacy & security * Database theory * Heterogeneous databases * Knowledge discovery in databases * Mobile, grid and cloud computing * Knowledge management * Parallel and distributed data * Temporal data * Web data, services and information engineering * Decision support systems * E-Business engineering and management * E-commerce and e-learning * Geographical information systems * Information management * Information quality and strategy * Information retrieval, integration and visualization * Information security * Information systems and technologies
This book unfolds ways to transform data into innovative solutions perceived as new remarkable and meaningful value. It offers practical views of the concepts and techniques readers need to get the most out of their large-scale research and data mining projects. It strides them through the data-analytical thinking, circumvents the difficulty in deciphering complex data systems and obtaining commercialization value from the data. Also known as data-driven science, soft computing and data mining disciplines cover a broad spectrum, an interdisciplinary field of scientific methods and processes. The book, Recent Advances in Soft Computing and Data Mining, delivers sufficient knowledge to tackle a wide range of issues seen in complex systems. This is done by exploring a vast combination of practices and applications by incorporating these two domains. To thrive in these data-driven ecosystems, researchers, data analysts, and practitioners must choose the best design to approach the problem with the most efficient tools and techniques. To thrive in these data-driven ecosystems, researchers, data analysts, and practitioners must understand the design choice and options of these approaches, thus to better appreciate the concepts, tools, and techniques used.
Advances such as cloud computing and streaming multimedia are steadily increasing the demand on network resources, and telecommunications providers must ensure that their networks are managed effectively in order to ensure that Internet and mobile users remain satisfied with their quality of service. Network and Traffic Engineering in Emerging Distributed Computing Applications focuses on network management and traffic engineering for Internet and distributed computing technologies, as well as present emerging technology trends and advanced platforms. This premier reference source for academics, students, researchers, readers, and knowledge seekers puts together some of the critical aspects of Internet and distributed systems.
This book provides an introduction to data science and offers a practical overview of the concepts and techniques that readers need to get the most out of their large-scale data mining projects and research studies. It discusses data-analytical thinking, which is essential to extract useful knowledge and obtain commercial value from the data. Also known as data-driven science, soft computing and data mining disciplines cover a broad interdisciplinary range of scientific methods and processes. The book provides readers with sufficient knowledge to tackle a wide range of issues in complex systems, bringing together the scopes that integrate soft computing and data mining in various combinations of applications and practices, since to thrive in these data-driven ecosystems, researchers, data analysts and practitioners must understand the design choice and options of these approaches. This book helps readers to solve complex benchmark problems and to better appreciate the concepts, tools and techniques used.
This book offers a systematic overview of the concepts and practical techniques that readers need to get the most out of their large-scale data mining projects and research studies. It guides them through the data-analytical thinking essential to extract useful information and obtain commercial value from the data. Presenting the outcomes of International Conference on Soft Computing and Data Mining (SCDM-2017), held in Johor, Malaysia on February 6-8, 2018, it provides a well-balanced integration of soft computing and data mining techniques. The two constituents are brought together in various combinations of applications and practices. To thrive in these data-driven ecosystems, researchers, engineers, data analysts, practitioners, and managers must understand the design choice and options of soft computing and data mining techniques, and as such this book is a valuable resource, helping readers solve complex benchmark problems and better appreciate the concepts, tools, and techniques employed.
This book provides a comprehensive introduction and practical look at the concepts and techniques readers need to get the most out of their data in real-world, large-scale data mining projects. It also guides readers through the data-analytic thinking necessary for extracting useful knowledge and business value from the data. The book is based on the Soft Computing and Data Mining (SCDM-16) conference, which was held in Bandung, Indonesia on August 18th-20th 2016 to discuss the state of the art in soft computing techniques, and offer participants sufficient knowledge to tackle a wide range of complex systems. The scope of the conference is reflected in the book, which presents a balance of soft computing techniques and data mining approaches. The two constituents are introduced to the reader systematically and brought together using different combinations of applications and practices. It offers engineers, data analysts, practitioners, scientists and managers the insights into the concepts, tools and techniques employed, and as such enables them to better understand the design choice and options of soft computing techniques and data mining approaches that are necessary to thrive in this data-driven ecosystem.
This book constitutes the refereed proceedings of the First International Conference on Soft Computing and Data Mining, SCDM 2014, held in Universiti Tun Hussein Onn Malaysia, in June 16th-18th, 2014. The 65 revised full papers presented in this book were carefully reviewed and selected from 145 submissions, and organized into two main topical sections; Data Mining and Soft Computing. The goal of this book is to provide both theoretical concepts and, especially, practical techniques on these exciting fields of soft computing and data mining, ready to be applied in real-world applications. The exchanges of views pertaining future research directions to be taken in this field and the resultant dissemination of the latest research findings makes this work of immense value to all those having an interest in the topics covered.
This book unfolds ways to transform data into innovative solutions perceived as new remarkable and meaningful value. It offers practical views of the concepts and techniques readers need to get the most out of their large-scale research and data mining projects. It strides them through the data-analytical thinking, circumvents the difficulty in deciphering complex data systems and obtaining commercialization value from the data. Also known as data-driven science, soft computing and data mining disciplines cover a broad spectrum, an interdisciplinary field of scientific methods and processes. The book, Recent Advances in Soft Computing and Data Mining, delivers sufficient knowledge to tackle a wide range of issues seen in complex systems. This is done by exploring a vast combination of practices and applications by incorporating these two domains. To thrive in these data-driven ecosystems, researchers, data analysts, and practitioners must choose the best design to approach the problem with the most efficient tools and techniques. To thrive in these data-driven ecosystems, researchers, data analysts, and practitioners must understand the design choice and options of these approaches, thus to better appreciate the concepts, tools, and techniques used.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|