![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
The past decade has seen remarkable growth in research related to petroleum reseIVoir simulation. This growth reflects several developments, not the least of which is the increased interest in oil recovery technologies requiring sophisticated engineer ing. Augmenting this interest has been the broader availability of supercomputers capable of handling the tremendous computational demands of a typical reseIVoir simulator. The field of reseIVoir simulation incorporates several major facets of applied mathematics. First, in view of the varieyt and complexity of the processes encoun tered, it is imperative that the modeler adopt a systematic approach to establishing the equations governing reseIVoir flows. Second, the mathematical structure of these flow equations needs to be carefully analyzed in order to develop appropriate and efficient numerical methods for their solution. Third, since some aspects of the discretized flow equations are typically stiff, one must develop efficient schemes for solving large sparse systems of linear equations. This monograph has three parts, each devoted to one of these three aspects of reseIVoir modeling. The text grew out of a set of lectures presented by the authors in the autumn of 1986 at the IBM Scientific Center in Bergen, Norway. We feel that it is only appropriate to caution the reader that many of the ideas that we present in this monograph do not reflect standard approaches in petroleum reseIVoir simulation. In fact, our aim is to outline promising new ways of attacking reseIVoir simulation prob lems, rather than to compile another textbook for the mainstream."
This investigation is an outgrowth of my doctoral dissertation at Princeton University. I am particularly grateful to Professors George F. Pinder and William G. Gray of Princeton for their advice during both my research and my writing. I believe that finite-element collocation holds promise as a numer ical scheme for modeling complicated flows in porous media. However, there seems to be a "conventional wisdom" maintaining that collocation is hopelessly beset by oscillations and is, in some way, fundamentally inappropriate for multiphase flows. I hope to dispel these objections, realizing that others will remain for further work. The U. S. National Science Foundation funded much of this study through grant number NSF-CEE-8111240. TABLE OF CONTENTS ABSTRACT ;; FOREWORD ;; ; CHAPTER ONE. THE PHYSICAL SYSTEM. 1.1 Introduction. 1 1.2 The reservoir and its contents. 5 1.3 Reservoir mechanics. 9 1.4 Supplementary constraints. 18 1.5 Governing equations. 26 CHAPTER TWO. REPRESENTING FLUID-PHASE BEHAVIOR. 39 2.1 Thermodynamics of the fluid system. 40 2.2 Standard equation-of-state methods. 45 2.3 Maxwell-set interpolation.
|
![]() ![]() You may like...
I Shouldnt Be Telling You This
Jeff Goldblum, The Mildred Snitzer Orchestra
CD
R61
Discovery Miles 610
|