0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (3)
  • R2,500 - R5,000 (4)
  • R5,000 - R10,000 (2)
  • -
Status
Brand

Showing 1 - 9 of 9 matches in All Departments

Mathematical Physics of Quantum Wires and Devices - From Spectral Resonances to Anderson Localization (Hardcover, 2000 ed.): N.... Mathematical Physics of Quantum Wires and Devices - From Spectral Resonances to Anderson Localization (Hardcover, 2000 ed.)
N. E. Hurt
R1,643 Discovery Miles 16 430 Ships in 12 - 17 working days

This is the first book to present a comprehensive treatment of the mathematical physics of quantum wires and devices. The focus is on the recent results in the area of the spectral theory of bent and deformed quantum wires, simple quantum devices, Anderson localization, the quantum Hall effect and graphical models for quantum wire systems. The Selberg trace formula for finite volume graphical models is reviewed. Examples and relationships to recent work on acoustic and fluid flow, trapped states and spectral resonances, quantum chaos, random matrix theory, spectral statistics, point interactions, photonic crystals, Landau models, quantum transistors, edge states and metal-insulator transitions are developed. Problems related to modeling open quantum devices are discussed. The research of Exner and co-workers in quantum wires, Stollmann, Figotin, Bellissard et al. in the area of Anderson localization and the quantum Hall effect, and Bird, Ferry, Berggren and others in the area of quantum devices and their modeling is surveyed. The work on finite volume graphical models is interconnected to recent work on Ramanujan graphs and diagrams, the Phillips-Sarnak conjectures, L-functions and scattering theory. Audience: This book will be of use to physicists, mathematicians and engineers interested in quantum wires, quantum devices and related mesoscopic systems.

Many Rational Points - Coding Theory and Algebraic Geometry (Hardcover, 2003 ed.): N. E. Hurt Many Rational Points - Coding Theory and Algebraic Geometry (Hardcover, 2003 ed.)
N. E. Hurt
R2,856 Discovery Miles 28 560 Ships in 10 - 15 working days

2 Triangle Groups: An Introduction 279 3 Elementary Shimura Curves 281 4 Examples of Shimura Curves 282 5 Congruence Zeta Functions 283 6 Diophantine Properties of Shimura Curves 284 7 Klein Quartic 285 8 Supersingular Points 289 Towers of Elkies 9 289 7. CRYPTOGRAPHY AND APPLICATIONS 291 1 Introduction 291 Discrete Logarithm Problem 2 291 Curves for Public-Key Cryptosystems 3 295 Hyperelliptic Curve Cryptosystems 4 297 CM-Method 5 299 6 Cryptographic Exponent 300 7 Constructive Descent 302 8 Gaudry and Harley Algorithm 306 9 Picard Jacobians 307 Drinfeld Module Based Public Key Cryptosystems 10 308 11 Drinfeld Modules and One Way Functions 308 12 Shimura's Map 309 13 Modular Jacobians of Genus 2 Curves 310 Modular Jacobian Surfaces 14 312 15 Modular Curves of Genus Two 313 16 Hecke Operators 314 8. REFERENCES 317 345 Index Xll Preface The history of counting points on curves over finite fields is very ex- tensive, starting with the work of Gauss in 1801 and continuing with the work of Artin, Schmidt, Hasse and Weil in their study of curves and the related zeta functions Zx(t), where m Zx(t) = exp (2: N t ) m m 2': 1 m with N = #X(F qm). If X is a curve of genus g, Weil's conjectures m state that L(t) Zx(t) = (1 - t)(l - qt) where L(t) = rr~!l (1 - O'.

Quantum Chaos and Mesoscopic Systems - Mathematical Methods in the Quantum Signatures of Chaos (Hardcover, 1997 ed.): N. E. Hurt Quantum Chaos and Mesoscopic Systems - Mathematical Methods in the Quantum Signatures of Chaos (Hardcover, 1997 ed.)
N. E. Hurt
R5,631 Discovery Miles 56 310 Ships in 10 - 15 working days

4. 2 Variance of Quantum Matrix Elements. 125 4. 3 Berry's Trick and the Hyperbolic Case 126 4. 4 Nonhyperbolic Case . . . . . . . 128 4. 5 Random Matrix Theory . . . . . 128 4. 6 Baker's Map and Other Systems 129 4. 7 Appendix: Baker's Map . . . . . 129 5 Error Terms 133 5. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 133 5. 2 The Riemann Zeta Function in Periodic Orbit Theory 135 5. 3 Form Factor for Primes . . . . . . . . . . . . . . . . . 137 5. 4 Error Terms in Periodic Orbit Theory: Co-compact Case. 138 5. 5 Binary Quadratic Forms as a Model . . . . . . . . . . . . 139 6 Co-Finite Model for Quantum Chaology 141 6. 1 Introduction. . . . . . . . 141 6. 2 Co-finite Models . . . . . 141 6. 3 Geodesic Triangle Spaces 144 6. 4 L-Functions. . . . . . . . 145 6. 5 Zelditch's Prime Geodesic Theorem. 146 6. 6 Zelditch's Pseudo Differential Operators 147 6. 7 Weyl's Law Generalized 148 6. 8 Equidistribution Theory . . . . . . . . . 150 7 Landau Levels and L-Functions 153 7. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 153 7. 2 Landau Model: Mechanics on the Plane and Sphere. 153 7. 3 Landau Model: Mechanics on the Half-Plane 155 7. 4 Selberg's Spectral Theorem . . . . . . . . . . . 157 7. 5 Pseudo Billiards . . . . . . . . . . . . . . . . . 158 7. 6 Landau Levels on a Compact Riemann Surface 159 7. 7 Automorphic Forms . . . . . 160 7. 8 Maass-Selberg Trace Formula 162 7. 9 Degeneracy by Selberg. . . . 163 7. 10 Hecke Operators . . . . . . . 163 7. 11 Selberg Trace Formula for Hecke Operators 167 7. 12 Eigenvalue Statistics on X . . . . 169 7. 13 Mesoscopic Devices. . . . . . . . 170 7. 14 Hall Conductance on Leaky Tori 170 7.

Geometric Quantization in Action - Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory... Geometric Quantization in Action - Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory (Paperback, Softcover reprint of the original 1st ed. 1983)
N. E. Hurt
R3,046 Discovery Miles 30 460 Ships in 10 - 15 working days

Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces."

Mathematical Physics of Quantum Wires and Devices - From Spectral Resonances to Anderson Localization (Paperback, Softcover... Mathematical Physics of Quantum Wires and Devices - From Spectral Resonances to Anderson Localization (Paperback, Softcover reprint of hardcover 1st ed. 2000)
N. E. Hurt
R1,476 Discovery Miles 14 760 Ships in 10 - 15 working days

This monograph on quantum wires and quantum devices is a companion vol ume to the author's Quantum Chaos and Mesoscopic Systems (Kluwer, Dordrecht, 1997). The goal of this work is to present to the reader the mathematical physics which has arisen in the study of these systems. The course which I have taken in this volume is to juxtapose the current work on the mathematical physics of quantum devices and the details behind the work so that the reader can gain an understanding of the physics, and where possible the open problems which re main in the development of a complete mathematical description of the devices. I have attempted to include sufficient background and references so that the reader can understand the limitations of the current methods and have direction to the original material for the research on the physics of these devices. As in the earlier volume, the monograph is a panoramic survey of the mathe matical physics of quantum wires and devices. Detailed proofs are kept to a min imum, with outlines of the principal steps and references to the primary sources as required. The survey is very broad to give a general development to a variety of problems in quantum devices, not a specialty volume."

Many Rational Points - Coding Theory and Algebraic Geometry (Paperback, 1st ed. Softcover of orig. ed. 2004): N. E. Hurt Many Rational Points - Coding Theory and Algebraic Geometry (Paperback, 1st ed. Softcover of orig. ed. 2004)
N. E. Hurt
R2,810 Discovery Miles 28 100 Ships in 10 - 15 working days

2 Triangle Groups: An Introduction 279 3 Elementary Shimura Curves 281 4 Examples of Shimura Curves 282 5 Congruence Zeta Functions 283 6 Diophantine Properties of Shimura Curves 284 7 Klein Quartic 285 8 Supersingular Points 289 Towers of Elkies 9 289 7. CRYPTOGRAPHY AND APPLICATIONS 291 1 Introduction 291 Discrete Logarithm Problem 2 291 Curves for Public-Key Cryptosystems 3 295 Hyperelliptic Curve Cryptosystems 4 297 CM-Method 5 299 6 Cryptographic Exponent 300 7 Constructive Descent 302 8 Gaudry and Harley Algorithm 306 9 Picard Jacobians 307 Drinfeld Module Based Public Key Cryptosystems 10 308 11 Drinfeld Modules and One Way Functions 308 12 Shimura's Map 309 13 Modular Jacobians of Genus 2 Curves 310 Modular Jacobian Surfaces 14 312 15 Modular Curves of Genus Two 313 16 Hecke Operators 314 8. REFERENCES 317 345 Index Xll Preface The history of counting points on curves over finite fields is very ex- tensive, starting with the work of Gauss in 1801 and continuing with the work of Artin, Schmidt, Hasse and Weil in their study of curves and the related zeta functions Zx(t), where m Zx(t) = exp (2: N t ) m m 2': 1 m with N = #X(F qm). If X is a curve of genus g, Weil's conjectures m state that L(t) Zx(t) = (1 - t)(l - qt) where L(t) = rr~!l (1 - O'.

Quantum Chaos and Mesoscopic Systems - Mathematical Methods in the Quantum Signatures of Chaos (Paperback, Softcover reprint of... Quantum Chaos and Mesoscopic Systems - Mathematical Methods in the Quantum Signatures of Chaos (Paperback, Softcover reprint of hardcover 1st ed. 1997)
N. E. Hurt
R5,459 Discovery Miles 54 590 Ships in 10 - 15 working days

4. 2 Variance of Quantum Matrix Elements. 125 4. 3 Berry's Trick and the Hyperbolic Case 126 4. 4 Nonhyperbolic Case . . . . . . . 128 4. 5 Random Matrix Theory . . . . . 128 4. 6 Baker's Map and Other Systems 129 4. 7 Appendix: Baker's Map . . . . . 129 5 Error Terms 133 5. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 133 5. 2 The Riemann Zeta Function in Periodic Orbit Theory 135 5. 3 Form Factor for Primes . . . . . . . . . . . . . . . . . 137 5. 4 Error Terms in Periodic Orbit Theory: Co-compact Case. 138 5. 5 Binary Quadratic Forms as a Model . . . . . . . . . . . . 139 6 Co-Finite Model for Quantum Chaology 141 6. 1 Introduction. . . . . . . . 141 6. 2 Co-finite Models . . . . . 141 6. 3 Geodesic Triangle Spaces 144 6. 4 L-Functions. . . . . . . . 145 6. 5 Zelditch's Prime Geodesic Theorem. 146 6. 6 Zelditch's Pseudo Differential Operators 147 6. 7 Weyl's Law Generalized 148 6. 8 Equidistribution Theory . . . . . . . . . 150 7 Landau Levels and L-Functions 153 7. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . 153 7. 2 Landau Model: Mechanics on the Plane and Sphere. 153 7. 3 Landau Model: Mechanics on the Half-Plane 155 7. 4 Selberg's Spectral Theorem . . . . . . . . . . . 157 7. 5 Pseudo Billiards . . . . . . . . . . . . . . . . . 158 7. 6 Landau Levels on a Compact Riemann Surface 159 7. 7 Automorphic Forms . . . . . 160 7. 8 Maass-Selberg Trace Formula 162 7. 9 Degeneracy by Selberg. . . . 163 7. 10 Hecke Operators . . . . . . . 163 7. 11 Selberg Trace Formula for Hecke Operators 167 7. 12 Eigenvalue Statistics on X . . . . 169 7. 13 Mesoscopic Devices. . . . . . . . 170 7. 14 Hall Conductance on Leaky Tori 170 7.

Phase Retrieval and Zero Crossings - Mathematical Methods in Image Reconstruction (Paperback, Softcover reprint of the original... Phase Retrieval and Zero Crossings - Mathematical Methods in Image Reconstruction (Paperback, Softcover reprint of the original 1st ed. 1989)
N. E. Hurt
R1,478 Discovery Miles 14 780 Ships in 10 - 15 working days

'Et moi, ..., si j'avait su comment en: revenir, One scrvice mathematics has rendered the je n'y scrais point alle.' human race. lt has put common sense back Jules Veme where it bdongs, on the topmost shelf next to the dusty canister labclled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Erle T. Bc1l 0. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'.All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."

Geometric Quantization in Action - Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory... Geometric Quantization in Action - Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory (Hardcover, 1983 ed.)
N. E. Hurt
R2,591 Discovery Miles 25 910 Out of stock

Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Adventures of Sherlock Holmes
Arthur Conan Doyle Hardcover R278 R202 Discovery Miles 2 020
Lord of the Flies
William Golding Paperback  (1)
R295 R236 Discovery Miles 2 360
Gone with the Wind (Wisehouse Classics…
Margaret Mitchell Hardcover R1,191 Discovery Miles 11 910
Picture of Slavery in the United States…
George Bourne Paperback R470 Discovery Miles 4 700
The Crime of Father Amaro
Eca De Queiros Paperback R362 Discovery Miles 3 620
Myths and Legends of Ancient Greece and…
E. M. Berens Paperback R95 R76 Discovery Miles 760
Emma
Jane Austen Paperback R525 R449 Discovery Miles 4 490
Nineteen Eighty-Four (1984)
George Orwell Hardcover R833 R728 Discovery Miles 7 280
Safari Nation - A Social History Of The…
Jacob Dlamini Paperback R320 R250 Discovery Miles 2 500
Jane Eyre
Charlotte Bronte Paperback R110 R88 Discovery Miles 880

 

Partners