Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
A user-friendly introduction to metric and topological groups "Topological Groups: An Introduction" provides a self-contained presentation with an emphasis on important families of topological groups. The book uniquely provides a modern and balanced presentation by using metric groups to present a substantive introduction to topics such as duality, while also shedding light on more general results for topological groups. Filling the need for a broad and accessible introduction to the subject, the book begins with coverage of groups, metric spaces, and topological spaces before introducing topological groups. Since linear spaces, algebras, norms, and determinants are necessary tools for studying topological groups, their basic properties are developed in subsequent chapters. For concreteness, product topologies, quotient topologies, and compact-open topologies are first introduced as metric spaces before their open sets are characterized by topological properties. These metrics, along with invariant metrics, act as excellent stepping stones to the subsequent discussions of the following topics: Matrix groups Connectednesss of topological groups Compact groups Character groups Exercises found throughout the book are designed so both novice and advanced readers will be able to work out solutions and move forward at their desired pace. All chapters include a variety of calculations, remarks, and elementary results, which are incorporated into the various examples and exercises. "Topological Groups: An Introduction" is an excellent book for advanced undergraduate and graduate-level courses on the topic. The book also serves as a valuable resource for professionals working in the fields of mathematics, science, engineering, and physics.
An accessible, practical introduction to the principles of differential equations The field of differential equations is a keystone of scientific knowledge today, with broad applications in mathematics, engineering, physics, and other scientific fields. Encompassing both basic concepts and advanced results, Principles of Differential Equations is the definitive, hands-on introduction professionals and students need in order to gain a strong knowledge base applicable to the many different subfields of differential equations and dynamical systems. Nelson Markley includes essential background from analysis and linear algebra, in a unified approach to ordinary differential equations that underscores how key theoretical ingredients interconnect. Opening with basic existence and uniqueness results, Principles of Differential Equations systematically illuminates the theory, progressing through linear systems to stable manifolds and bifurcation theory. Other vital topics covered include: Basic dynamical systems conceptsConstant coefficientsStabilityThe Poincare return mapSmooth vector fields As a comprehensive resource with complete proofs and more than 200 exercises, Principles of Differential Equations is the ideal self-study reference for professionals, and an effective introduction and tutorial for students.
|
You may like...
|