Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Various endogenous and environmental challenges of homoiostasis have resulted in the evolution of apparently quite different mechanisms for the same or similar functions in individual representatives of the animal kingdom. One of the prominent achievements of comparative physiology over the last few decades has been the description of regula- tory features common to many studied species beyond the extreme diversity of their morphological forms. Delineation offunctional princi- ples universally applicable to the physiology and biochemistry of living systems became often possible through technical advances in the devel- opment of numerous new techniques, in many cases modified and adopted from other fields of science, but also by approaching certain problems using multifactorial analysis. The advance in technology has facilitated studies of minute functional details of mechanisms, which finally lead to better understanding of generally similar functions, covered by the multiple developments of Nature as a response to an extreme variety of different conditions. Improved understanding of specific mechanisms, however, has presented new problems at the level of system integration. The importance of the integrative aspect became particularly apparent during an international symposium on 'Mecha- nisms of Systemic Regulation in Lower Vertebrates: Respiration, Circu- lation, Ion Transfer and Metabolism' (organized in 1990 by Norbert Heisler and Johannes Piiper at the Max-Planck-Institut fUr experimen- telle Medizin at Gottingen/Germany).
Various endogenous and environmental challenges of homoiostasis have resulted in the evolution of apparently quite different mechanisms for the same or similar functions in individual representatives of the animal kingdom. One of the prominent achievements of comparative physiology over the last few decades has been the description of regula- tory features common to many studied species beyond the extreme diversity of their morphological forms. Delineation of functional princi- ples universally applicable to the physiology and biochemistry of living systems became often possible through technical advances in the devel- opment of numerous new techniques, in many cases modified and adopted from other fields of science, but also by approaching certain problems using multifactorial analysis. The advance in technology has facilitated studies of minute functional details of mechanisms, which finally lead to better understanding of generally similar functions, covered by the multiple developments of Nature as a response to an extreme variety of different conditions. Improved understanding of specific mechanisms, however, has presented new problems at the level of system integration. The importance of the integrative aspect became particularly apparent during an international symposium on 'Mecha- nisms of Systemic Regulation in Lower Vertebrates: Respiration, Circu- lation, Ion Transfer and Metabolism' (organized in 1990 by Norbert Heisler and Johannes Piiper at the Max-Planck-Institut flir experimen- telle Medizin at Gottingen/Germany).
The structural and chemical limitations to respiratory gas exchange existing between the ambient medium and the cell are comprehensively treated. Beginning with an examination of the natural oscillations of respiratory gases in both terrestrial and aquatic environments, Vertebrate Gas Exchange details the structures involved in convecting the medium (air or water), the morphometrics of capillary gas transfers, and gas transfer kinetics. Important features include details on measurement techniques associated with tissue capillary supply and gas exchange kinetics.
|
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
|