Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Dynamic Time Series Models using R-INLA: An Applied Perspective is the outcome of a joint effort to systematically describe the use of R-INLA for analysing time series and showcasing the code and description by several examples. This book introduces the underpinnings of R-INLA and the tools needed for modelling different types of time series using an approximate Bayesian framework. The book is an ideal reference for statisticians and scientists who work with time series data. It provides an excellent resource for teaching a course on Bayesian analysis using state space models for time series. Key Features: Introduction and overview of R-INLA for time series analysis. Gaussian and non-Gaussian state space models for time series. State space models for time series with exogenous predictors. Hierarchical models for a potentially large set of time series. Dynamic modelling of stochastic volatility and spatio-temporal dependence.
Thoroughly updated throughout, A First Course in Linear Model Theory, Second Edition is an intermediate-level statistics text that fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the authors introduce to students the mathematical and statistical concepts and tools that form a foundation for studying the theory and applications of both univariate and multivariate linear models. In addition to adding R functionality, this second edition features three new chapters and several sections on new topics that are extremely relevant to the current research in statistical methodology. Revised or expanded topics include linear fixed, random and mixed effects models, generalized linear models, Bayesian and hierarchical linear models, model selection, multiple comparisons, and regularized and robust regression. New to the Second Edition: Coverage of inference for linear models has been expanded into two chapters. Expanded coverage of multiple comparisons, random and mixed effects models, model selection, and missing data. A new chapter on generalized linear models (Chapter 12). A new section on multivariate linear models in Chapter 13, and expanded coverage of the Bayesian linear models and longitudinal models. A new section on regularized regression in Chapter 14. Detailed data illustrations using R. The authors' fresh approach, methodical presentation, wealth of examples, use of R, and introduction to topics beyond the classical theory set this book apart from other texts on linear models. It forms a refreshing and invaluable first step in students' study of advanced linear models, generalized linear models, nonlinear models, and dynamic models.
Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed can be applied to other types of discrete-valued time series, such as binary-valued or categorical time series. Explore a Balanced Treatment of Frequentist and Bayesian Perspectives Accessible to graduate-level students who have taken an elementary class in statistical time series analysis, the book begins with the history and current methods for modeling and analyzing univariate count series. It next discusses diagnostics and applications before proceeding to binary and categorical time series. The book then provides a guide to modern methods for discrete-valued spatio-temporal data, illustrating how far modern applications have evolved from their roots. The book ends with a focus on multivariate and long-memory count series. Get Guidance from Masters in the Field Written by a cohesive group of distinguished contributors, this handbook provides a unified account of the diverse techniques available for observation- and parameter-driven models. It covers likelihood and approximate likelihood methods, estimating equations, simulation methods, and a Bayesian approach for model fitting.
Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed can be applied to other types of discrete-valued time series, such as binary-valued or categorical time series. Explore a Balanced Treatment of Frequentist and Bayesian Perspectives Accessible to graduate-level students who have taken an elementary class in statistical time series analysis, the book begins with the history and current methods for modeling and analyzing univariate count series. It next discusses diagnostics and applications before proceeding to binary and categorical time series. The book then provides a guide to modern methods for discrete-valued spatio-temporal data, illustrating how far modern applications have evolved from their roots. The book ends with a focus on multivariate and long-memory count series. Get Guidance from Masters in the Field Written by a cohesive group of distinguished contributors, this handbook provides a unified account of the diverse techniques available for observation- and parameter-driven models. It covers likelihood and approximate likelihood methods, estimating equations, simulation methods, and a Bayesian approach for model fitting.
|
You may like...
|