![]() |
![]() |
Your cart is empty |
||
Showing 1 - 25 of 61 matches in All Departments
Nanostructured Materials for Biomedical Applications highlights progress, challenges and opportunities in nanomedicine and discusses novel engineering approaches of nanostructured materials that are useful in various biomedical applications. The book provides a comprehensive review of the state-of-the-art in bio-nanotechnology, with an emphasis on diverse biomedical applications, such as in drug delivery, bioimaging, hyperthermia and targeted cancer therapy. Users will find this to be a broad introductory reference for anyone new to the field or those who wish to gain a thorough overview of nanostructured materials in the context of biomedical applications. The breadth of this book will appeal to an interdisciplinary audience, including materials scientists, pharmaceutical scientists and biomedical engineers.
Nanostructured Materials Engineering and Characterization for Battery Applications is designed to help solve fundamental and applied problems in the field of energy storage. Broken up into four separate sections, the book begins with a discussion of the fundamental electrochemical concepts in the field of energy storage. Other sections look at battery materials engineering such as cathodes, electrolytes, separators and anodes and review various battery characterization methods and their applications. The book concludes with a review of the practical considerations and applications of batteries. This will be a valuable reference source for university professors, researchers, undergraduate and postgraduate students, as well as scientists working primarily in the field of materials science, applied chemistry, applied physics and nanotechnology.
Design, Fabrication, and Characterization of Multifunctional Nanomaterials covers major techniques for the design, synthesis, and development of multifunctional nanomaterials. The chapters highlight the main characterization techniques, including X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning probe microscopy. The book explores major synthesis methods and functional studies, including: Brillouin spectroscopy; Temperature-dependent Raman spectroscopic studies; Magnetic, ferroelectric, and magneto-electric coupling analysis; Organ-on-a-chip methods for testing nanomaterials; Magnetron sputtering techniques; Pulsed laser deposition techniques; Positron annihilation spectroscopy to prove defects in nanomaterials; Electroanalytic techniques. This is an important reference source for materials science students, scientists, and engineers who are looking to increase their understanding of design and fabrication techniques for a range of multifunctional nanomaterials.
Fundamentals and Properties of Multifunctional Nanomaterials outlines the properties of highly intricate nanosystems, including liquid crystalline nanomaterials, magnetic nanosystems, ferroelectrics, nanomultiferroics, plasmonic nanosystems, carbon-based nanomaterials, 1D and 2D nanomaterials, and bio-nanomaterials. This book reveals the electromagnetic interference shielding properties of nanocomposites. The fundamental attributes of the nanosystems leading to the multifunctional applications in diverse areas are further explored throughout this book. This book is a valuable reference source for researchers in materials science and engineering, as well as in related disciplines, such as chemistry and physics.
Nano-Optics: Fundamentals, Experimental Methods, and Applications offers insights into the fundamentals and industrial applications of nanoscale light-emitting materials and their composites. This book serves as a reference, offering an overview of existing research, with a particular focus on industrial applications. Nano-optics is the branch of nanoscience and nanotechnology that deals with interaction of light with nanoscale objects. This book explores the materials, structure, manufacturing techniques, and industrial applications of nano-optics. The applications discussed include healthcare, communication, astronomy, and satellites.
Nanomaterials Synthesis: Design, Fabrication and Applications combines the present and emerging trends of synthesis routes of nanomaterials with the incorporation of various technologies. The book covers the new trends and challenges in the synthesis and surface engineering of a wide range of nanomaterials, including emerging technologies used for their synthesis. Significant properties, safety and sustainability and environmental impacts of the synthesis routes are explored. This book is an important information source that will help materials scientists and engineers who want to learn more about how different classes of nanomaterials are designed.
Carbon-Based Nanofillers and Their Rubber Nanocomposites: Carbon Nano-Objects presents their synthetic routes, characterization and structural properties, and the effect of nano fillers on rubber nanocomposites. The synthesis and characterization of all carbon-based fillers is discussed, along with their morphological, thermal, mechanical, dynamic mechanical and rheological properties. In addition, the book covers the theory, modeling and simulation aspects of these nanocomposites, along with various applications. Users will find this a unique contribution to the field of rubber science and technology that is ideal for graduates, post graduates, engineers, research scholars, polymer engineers, polymer technologists, and those in biomedical fields.
Characterization of Nanomaterials: Advances and Key Technologies discusses the latest advancements in the synthesis of various types of nanomaterials. The book's main objective is to provide a comprehensive review regarding the latest advances in synthesis protocols that includes up-to-date data records on the synthesis of all kinds of inorganic nanostructures using various physical and chemical methods. The synthesis of all important nanomaterials, such as carbon nanostructures, Core-shell Quantum dots, Metal and metal oxide nanostructures, Nanoferrites, polymer nanostructures, nanofibers, and smart nanomaterials are discussed, making this a one-stop reference resource on research accomplishments in this area. Leading researchers from industry, academia, government and private research institutions across the globe have contributed to the book. Academics, researchers, scientists, engineers and students working in the field of polymer nanocomposites will benefit from its solutions for material problems.
Synthesis of Inorganic Nanomaterials: Advances and Key Technologies discusses the latest advancements in the synthesis of various types of nanomaterials. The book's main objective is to provide a comprehensive review regarding the latest advances in synthesis protocols that includes up-to-date data records on the synthesis of all kinds of inorganic nanostructures using various physical and chemical methods. The synthesis of all important nanomaterials, such as carbon nanostructures, Core-shell Quantum dots, Metal and metal oxide nanostructures, Nanoferrites, polymer nanostructures, nanofibers, and smart nanomaterials are discussed, making this a one-stop reference resource on research accomplishments in this area. Leading researchers from industry, academia, government and private research institutions across the globe have contributed to the book. Academics, researchers, scientists, engineers and students working in the field of polymer nanocomposites will benefit from its solutions for material problems.
This volume looks at the different aspects involved in controlling microbial growth and the techniques employed in obtaining sterile surfaces. It covers research on coatings, nano-materials, herbal materials, naturally occurring antimicrobials in designing antimicrobial surfaces. It discusses issues of antibiotic resistance, synthesis techniques, toxicity, and current and potential applications of antimicrobial surfaces, and this book will serve as a useful reference to a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering.
Applications of Multifunctional Nanomaterials showcases the major applications of highly correlated nanosystems that highlight the multifunctionality of nanomaterials. This includes applications of nanomaterials in spintronics, information storage, magnetic data storage and memory device applications, energy harvesting applications using nanomultiferroics with piezoelectric polymers, nonlinear optical limiting applications using graphene or ferrite nanoparticles, soft tissues applications, EMI shielding applications and even applications in sunscreen lotions, cosmetics and food packaging will be discussed. In addition, nanoparticle incorporation in animal nutrition intended for increased productivity is an innovative and groundbreaking theme of the book. Finally, functionalized magnetic nanoparticles for drug delivery, magnetic hyperthermia, sutures, cancer therapy, dentistry and other biomedical and bio-engineering applications using nanoparticles are discussed in detail.
Engineered Polymer Nanocomposites for Energy Harvesting Applications looks at materials engineering, characterization and design aspects of mechanical energy harvesting devices for superior performance. Tapping into electrical energy from various mechanical stimuli, such as stress, elongation, tension and vibration has been getting substantial research attention, however, there are many challenges associated with the development energy harvesters with efficient conversion capabilities. This title consolidates a broad spectrum of material engineering and devices design research into one resource and will be an invaluable reference for those working in this field.
Upconversion Nanophosphors provides detailed information about various lanthanide-based upconversion nanoparticles and their application in different fields. It will also help solve fundamental and applied problems of inorganic phosphor materials showing upconversion behavior, as well as generate innovative ideas related to the application of inorganic phosphor materials. This book will prove to be an invaluable reference work for scientists, engineers, industrial experts, and masters and PhD students working in the field of upconversion and materials science.
Nanomaterials for Solar Cell Applications provides a review of recent developments in the field of nanomaterials based solar cells. It begins with a discussion of the fundamentals of nanomaterials for solar calls, including a discussion of lifecycle assessments and characterization techniques. Next, it reviews various types of solar cells, i.e., Thin film, Metal-oxide, Nanowire, Nanorod and Nanoporous materials, and more. Other topics covered include a review of quantum dot sensitized and perovskite and polymer nanocomposites-based solar cells. This book is an ideal resource for those working in this evolving field of nanomaterials and renewable energy.
Carbon-Based Nanofillers and their Rubber Nanocomposites: Fundamentals and Applications provides the synthetic routes, characterization, structural properties and effect of nano fillers on rubber nanocomposites. The synthesis and characterization of all carbon-based fillers is discussed, along with their morphological, thermal, mechanical, dynamic mechanical, and rheological properties. The book also covers the theory, modeling, and simulation aspects of these nanocomposites and their various applications. Users will find a valuable reference source for graduates and post graduates, engineers, research scholars, polymer engineers, polymer technologists, and those working in the biomedical field.
Applications of Nanomaterials: Advances and Key Technologies discusses the latest advancements in the synthesis of various types of nanomaterials. The book's main objective is to provide a comprehensive review regarding the latest advances in synthesis protocols that includes up-to-date data records on the synthesis of all kinds of inorganic nanostructures using various physical and chemical methods. The synthesis of all important nanomaterials, such as carbon nanostructures, Core-shell Quantum dots, Metal and metal oxide nanostructures, Nanoferrites, polymer nanostructures, nanofibers, and smart nanomaterials are discussed, making this a one-stop reference resource on research accomplishments in this area. Leading researchers from industry, academia, government and private research institutions across the globe have contributed to the book. Academics, researchers, scientists, engineers and students working in the field of polymer nanocomposites will benefit from its solutions for material problems.
It covers the synthesis, characterizations, and properties of natural polymeric systems, including their morphology, structure, and dynamics. It introduces the most recent innovations and applications of natural polymers and their composites in the food, construction, electronics, biomedical, pharmaceutical, and engineering industries.
With contributions from leading researchers in the nanomedicine field from industry, academia, and government and private research institutions across the globe, the volume provides an up-to-date report on topical issues in nano-drug delivery and nanotechnological approaches to tissue engineering. The volume offers research on a variety of diverse nano-based drug delivery systems along with discussions of their efficacy, safety, toxicology, and applications for different purposes. Focusing on nanotechnology approaches to tissue engineering, this volume considers the use of hydrogel systems, nanoceria and micro- and nano-structured biomaterials for bone tissue engineering, mesenchymal stem cells, and more.
Here is an informative collection of peer-reviewed chapters on new and innovative holistic approaches to treat contemporary lifestyle diseases. The volume discusses the basics of holistic medicine along with detailed explanations of lifestyle diseases such as various types of cancers, health problems due to overnight mobile telephone usage, AIDS, arthritis, and asthma. The book also advocates several effective strategies that use a combination of nontraditional treatment approaches. The chapters discuss medicinal mushrooms in cancer therapy, employing Ayurveda to treat obesity, treating AIDS by using gene therapy and gene editing technology, and more. This volume will be of interest to open-minded and forward-thinking scientists, researchers, doctors, and other healthcare experts worldwide who endeavor to employ new holistic approaches for the treatment of contemporary lifestyle health issues.
This new volume presents various research studies that focus on the development of advanced nanomaterials and their composites and blends for different applications in sensing, electrical, biomedical, coating, industrial applications, etc. This book includes detailed discussions on the synthesis, properties, processing, and potential applications of nanomaterials and their blends and composites. Some chapters also explain the basic theoretical aspects of these nanostructured materials and systems, which help readers to develop a better understanding various application areas, including construction. Nanostructured Smart Materials: Synthesis, Characterization and Potential Applications responds to the need for advanced polymeric materials and nanostructured materials with ultimate performance and enhanced qualities and properties for varied applications. The chapters highlight information and research that will be valuable for development of new smart materials. This book will be a useful reference source for universities, colleges, researchers from R&D groups, scientists, postdoctoral fellows, industrialists, graduate and postgraduate students, and faculty.
Nanostructured materials are emerging as a new class of materials that exhibit unique microstructures and enhanced mechanical performance. As an outcome of this, these materials have attracted considerable attention in scientific communities all over the world. There is continuous research to facilitate product development, thereby improving product quality and reliability in industry. This volume is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. Special emphasis is given to new applications of nanostructures and nanocomposites in various fields, such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine. The chapters are divided into sections focusing on: Nanoparticles Assembly and Nanostructured Materials Nanocomposites Properties Nanostructured Materials for Biomedical Applications
This informative volume discusses recent advancements in the research and development in synthesis, characterization, processing, morphology, structure, and properties of advanced polymeric materials. With contributions from leading international researchers and professors in academic, government and industrial institutions, Advanced Polymeric Materials for Sustainability and Innovations has a special focus on eco-friendly polymers, polymer composites, nanocomposites, and blends and materials for traditional and renewable energy. In this book the relationship between processing-morphology-property applications of polymeric materials is well established. Recent advances in the synthesis of new functional monomers has shown strong potential in generating better property polymers from renewable resources. Fundamental advances in the field of nanocomposite blends and nanostructured polymeric materials in automotive, civil, biomedical and packaging/coating applications are the highlights of this book.
The aim of this new compendium is to provide a solid understanding of the recent developments in advanced polymeric materials from macro- to nano-length scales. Composites are becoming more important because they can help to improve our quality of life, such as being put into service in flight vehicles, automobiles, boats, pipelines, buildings, roads, bridges, and dozens of other products, including medical products. The chapters cover a multitude of important advances, including explanations of the significance of the new fillers, like graphene and carbon nanotubes, in different matrix systems. Coverage of the application of these materials in biological and others fields also makes this book unique. Topics include advances on the processing, properties, recyclability, and reparability, and applications for polymer matrix composites, ceramic matrix composites, carbon matrix composites, wood-based composites, biocomposites, ecocomposites, nanocomposites, and more.
The volume includes presentations of technological and research accomplishments along with novel approaches in nanomedicine and nanotechnology. It explores the different types of nanomedicinal drugs with their production and commercial significance. Other topics discussed are the use of natural and synthetic nanoparticles for the production of drugs, different types of nanoparticles systems, drug carriers, wound-healing antimicrobial activity, effects of natural materials in nanomedicine, and toxicity of nanoparticles. The valuable information presented in this volume will help to keep those in this field up to date on the key findings, observations, and fabrication of drugs related to nanomedicine and nanotechnology. With chapters written by prominent researchers from academia, industry, and government and private research laboratories across the world, the book will prove to be a rich resource.
Scientists and researchers are looking for new smart materials to replace old or conventional materials for better performance and for new applications. The use of polymeric materials and nanomaterials is increasing due to their wide-spectrum tunability and many properties. It is now easier to formulate materials for special purposes using these materials than using conventional materials and methods. Many commercial products made from polymeric materials and nanomaterials are now in use and on the market. This book presents a diverse selection of cutting-edge research on the development of polymeric materials and nanomaterials for new and different applications. These include electrical applications, biomedical applications, sensing applications, coating applications, and others. A few chapters dedicated to materials for construction applications are also included. Discussions include the properties, behavior, preparation, processing, and characterization of various polymeric materials, nanomaterials, and their composites. Some of the chapter authors present theoretical studies of these systems, which can help readers to develop a better understanding in this area. |
![]() ![]() You may like...
Rhino War - A General's Bold Strategy In…
Johan Jooste, Tony Park
Paperback
![]()
Counseling Children
Donna Henderson, Charles Thompson
Hardcover
|