Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
This book discusses the development of radio-wave tomography methods as a means of remote non-destructive testing, diagnostics of the internal structure of semi-transparent media, and reconstruction of the shapes of opaque objects based on multi-angle sounding. It describes physical-mathematical models of systems designed to reconstruct images of hidden objects, based on tomographic processing of multi-angle remote measurements of scattered radio and acoustic (ultrasonic) wave radiation.
The book introduces optical wave propagation in the irregular turbulent atmosphere and the relations to laser beam and LIDAR applications for both optical communication and imaging. It examines atmosphere fundamentals, structure, and content. It explains specific situations occurring in the irregular atmosphere and for specific natural phenomena that affect optical ray and laser beam propagation. It emphasizes how to use LIDAR to investigate atmospheric phenomena and predict primary parameters of the irregular turbulent atmosphere and suggests what kinds of optical devices to operate in different atmospheric situations to minimize the deleterious effects of natural atmospheric phenomena.
The book introduces the basic foundations of high mathematics and vector algebra. Then, it explains the basic aspects of classical electrodynamics and electromagnetism. Based on such knowledge readers investigate various radio propagation problems related to guiding structures connecting electronic devices with antenna terminals placed at the different radar systems. It explains the role of antennas in process of transmission of radio signals between the terminals. Finally, it shows the relation between the main operational charactistics of each kind of radar and the corresponding knowledge obtained from the previous chapters.
Exploring the practical aspects of atmospheric optical communication and light detection and ranging (LIDAR), Applied Aspects of Optical Communication and LIDAR details the role of atmospheric structures in propagation phenomena that influence the transmission of optical signals through perturbed atmospheric communication channels. It examines numerous situations in over-the-terrain atmospheric communication channels, including the effects of natural phenomena and the corresponding features (turbulences and hydrometeors) on optical ray propagation. Bridging the gap between the parameters of optical communication links and signal information data streams, this concise reference addresses line-of-sight (LOS) as well as obstructive non-line-of-sight (NLOS) propagation conditions. It also: Details the main characteristics of optical communication channels Introduces the quasi-regular gaseous atmosphere Describes numerous situations in the atmospheric communication channel Explains the main characteristics of optical communication channels Complete with parameters for information data streams, the text also provides time-saving suggestions for determining which optical devices will work best for minimizing the deleterious effects of natural atmospheric phenomena. Whether you're a researcher, an engineer, or student-this book provides you with the practical understanding required to use LIDAR to investigate all forms of atmospheric phenomena and to learn how to accurately predict primary parameters of atmospheric optical channels.
A Complete Reference for the 21st Century Until recently, much of the communications technology in the former Eastern bloc countries was largely unknown. Due to the historically competitive nature of East/West relations, scientific groups operated independently, without the benefit of open communication on theoretical frameworks and experimental technologies. As these countries have begun to bridge the gap and work in a more cooperative environment, the need has grown for a comprehensive guide which assimilates all the information in this vast knowledge bank. Ionosphere and Applied Aspects of Radio Communication and Radar meets the demand for an updated reference on this continually evolving global technology. This book examines the changes that have occurred in the past two or three decades. It thoroughly reviews ionospheric radio propagation, over-horizon and above-horizon radars, and miniature ionospheric stations used for investigating nonregular phenomena occurring in the ionosphere. In addition, it also comprehensively discusses land-satellite and satellite-satellite communications. This volume also reviews an area that has been all but ignored in previous works: the effects of plasma irregularities on radio waves propagation through the inhomogeneous ionosphere. Here, a heavy focus is placed on the effects of these irregular phenomena. And due to the recent wireless revolution, more attention than ever has been aimed on improving the efficiency of land-satellite and satellite-satellite communication networks, which are fully addressed. Included are- Transport processes and photochemistry reactions occurring in the regular homogeneous ionosphere Nonlinear phenomena occurring in the irregular ionosphere Instabilities in the inhomogeneous disturbed ionosphere Various ambient natural and artificial sources and corresponding plasma irregularities Written by two leading scientists, this book will be an invaluable guide to anyone working in this ever-changing field.
Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment describes experimental and theoretical studies on the effects of rocket burns and launchings on the near-the-Earth environment and geomagnetic fields. It illuminates the main geophysical and radiophysical effects on the ionosphere and magnetosphere surrounding the Earth that accompany rocket or cosmic apparatus burns and launchings from 1,000 to 10,000 kilometers. The book analyzes the disturbances of plasma and the ambient magnetic and electric fields in the near-Earth environment from rocket burns and launchings from Russia, Kazakhstan, the United States, China, France, and other global space centers. Describing the radiophysical effects of rocket burn and launching in the middle and upper ionosphere, it focuses on the ecological consequences of space exploration-detailing methods for eliminating the harmful effects of space exploration. Measurements for the studies presented in the book were carried out using numerous radiophysical methods and techniques, including HF Doppler radar, incoherent and coherent scatter radar systems, microwave radar, magnetometer, and optical instrumentation and spectroscopy. The book analyzes the effects of rocket burns and launchings from 1975 to 2010 in worldwide launch campaigns. This book is an ideal reference for scientists in geophysics and radiophysics, specialists in rocket launching, and ecologists. It is also suitable as a fundamental handbook for graduate and postgraduate students taking physics and cosmic sciences courses at the university level.
The book introduces optical wave propagation in the irregular turbulent atmosphere and the relations to laser beam and LIDAR applications for both optical communication and imaging. It examines atmosphere fundamentals, structure, and content. It explains specific situations occurring in the irregular atmosphere and for specific natural phenomena that affect optical ray and laser beam propagation. It emphasizes how to use LIDAR to investigate atmospheric phenomena and predict primary parameters of the irregular turbulent atmosphere and suggests what kinds of optical devices to operate in different atmospheric situations to minimize the deleterious effects of natural atmospheric phenomena.
Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment describes experimental and theoretical studies on the effects of rocket burns and launchings on the near-the-Earth environment and geomagnetic fields. It illuminates the main geophysical and radiophysical effects on the ionosphere and magnetosphere surrounding the Earth that accompany rocket or cosmic apparatus burns and launchings from 1,000 to 10,000 kilometers. The book analyzes the disturbances of plasma and the ambient magnetic and electric fields in the near-Earth environment from rocket burns and launchings from Russia, Kazakhstan, the United States, China, France, and other global space centers. Describing the radiophysical effects of rocket burn and launching in the middle and upper ionosphere, it focuses on the ecological consequences of space exploration-detailing methods for eliminating the harmful effects of space exploration. Measurements for the studies presented in the book were carried out using numerous radiophysical methods and techniques, including HF Doppler radar, incoherent and coherent scatter radar systems, microwave radar, magnetometer, and optical instrumentation and spectroscopy. The book analyzes the effects of rocket burns and launchings from 1975 to 2010 in worldwide launch campaigns. This book is an ideal reference for scientists in geophysics and radiophysics, specialists in rocket launching, and ecologists. It is also suitable as a fundamental handbook for graduate and postgraduate students taking physics and cosmic sciences courses at the university level.
Exploring the practical aspects of atmospheric optical communication and light detection and ranging (LIDAR), Applied Aspects of Optical Communication and LIDAR details the role of atmospheric structures in propagation phenomena that influence the transmission of optical signals through perturbed atmospheric communication channels. It examines numerous situations in over-the-terrain atmospheric communication channels, including the effects of natural phenomena and the corresponding features (turbulences and hydrometeors) on optical ray propagation. Bridging the gap between the parameters of optical communication links and signal information data streams, this concise reference addresses line-of-sight (LOS) as well as obstructive non-line-of-sight (NLOS) propagation conditions. It also:
Complete with parameters for information data streams, the text also provides time-saving suggestions for determining which optical devices will work best for minimizing the deleterious effects of natural atmospheric phenomena. Whether you re a researcher, an engineer, or student this book provides you with the practical understanding required to use LIDAR to investigate all forms of atmospheric phenomena and to learn how to accurately predict primary parameters of atmospheric optical channels.
This book discusses the development of radio-wave tomography methods as a means of remote non-destructive testing, diagnostics of the internal structure of semi-transparent media, and reconstruction of the shapes of opaque objects based on multi-angle sounding. It describes physical-mathematical models of systems designed to reconstruct images of hidden objects, based on tomographic processing of multi-angle remote measurements of scattered radio and acoustic (ultrasonic) wave radiation.
The book introduces the basic foundations of high mathematics and vector algebra. Then, it explains the basic aspects of classical electrodynamics and electromagnetism. Based on such knowledge readers investigate various radio propagation problems related to guiding structures connecting electronic devices with antenna terminals placed at the different radar systems. It explains the role of antennas in process of transmission of radio signals between the terminals. Finally, it shows the relation between the main operational charactistics of each kind of radar and the corresponding knowledge obtained from the previous chapters.
A Complete Reference for the 21st Century Until recently, much of the communications technology in the former Eastern bloc countries was largely unknown. Due to the historically competitive nature of East/West relations, scientific groups operated independently, without the benefit of open communication on theoretical frameworks and experimental technologies. As these countries have begun to bridge the gap and work in a more cooperative environment, the need has grown for a comprehensive guide which assimilates all the information in this vast knowledge bank. Ionosphere and Applied Aspects of Radio Communication and Radar meets the demand for an updated reference on this continually evolving global technology. This book examines the changes that have occurred in the past two or three decades. It thoroughly reviews ionospheric radio propagation, over-horizon and above-horizon radars, and miniature ionospheric stations used for investigating nonregular phenomena occurring in the ionosphere. In addition, it also comprehensively discusses land-satellite and satellite-satellite communications. This volume also reviews an area that has been all but ignored in previous works: the effects of plasma irregularities on radio waves propagation through the inhomogeneous ionosphere. Here, a heavy focus is placed on the effects of these irregular phenomena. And due to the recent wireless revolution, more attention than ever has been aimed on improving the efficiency of land-satellite and satellite-satellite communication networks, which are fully addressed. Included are- Transport processes and photochemistry reactions occurring in the regular homogeneous ionosphere Nonlinear phenomena occurring in the irregular ionosphere Instabilities in the inhomogeneous disturbed ionosphere Various ambient natural and artificial sources and corresponding plasma irregularities Written by two leading scientists, this book will be an invaluable guide to anyone working in this ever-changing field.
|
You may like...
|