Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
Environmental sustainability is one of the biggest issues faced by the mankind. Rapid & rampant industrialization has put great pressure on the natural resources. To make our planet a sustainable ecosystem, habitable for future generations & provide equal opportunity for all the living creatures we not only need to make corrections but also remediate the polluted natural resources. The low-input biotechnological techniques involving microbes and plants can provide the solution for resurrecting the ecosystems. Bioremediation and biodegradation can be used to improve the conditions of polluted soil and water bodies. Green energy involving biofuels have to replace the fossil fuels to combat pollution & global warming. Biological alternatives (bioinoculants) have to replace harmful chemicals for maintaining sustainability of agro-ecosystems. The book will cover the latest developments in environmental biotech so as to use in clearing and maintaining the ecosystems for sustainable future.
Plant microbe interaction is a complex relationship that can have various beneficial impacts on both the communities. An urgent need of today's world is to get high crop yields in an ecofriendly manner. Utilization of beneficial and multifaceted plant growth promoting (PGP) microorganisms can solve the problem of getting enhanced yields without disturbing the ecosystem thus leading to sustainability. For this to achieve understanding of the intricate details of how the beneficial microbes form associations with the host plant and sustain that for millions of years must be known. A holistic approach is required wherein the diversity of microbes associated with plant and the network of mechanisms by which they benefit the host must be studied and utilized. 'Plant Microbe Symbiosis - Fundamentals and Advances' provides a comprehensive understanding of positive interactions that occur between plant and microorganisms and their utilization in the fields. The book reviews the enormous diversity of plant associated microbes, the dialog between plant-microbes-microbes and mechanisms of action of PGP microbes. Utilization of PGPRs as nutrient providers, in combating phytopathogens and ameliorating the stressed and polluted soils is also explained. Importantly, the book also throws light on the unanswered questions and future direction of research in the field. It illustrates how the basic knowledge can be amalgamated with advanced technology to design the future bioformulations.
Plants form mutualistic association with various microorganisms, particularly in the rhizosphere region. The association benefits both the partners in a number of ways. A single plant can support the growth of diverse microbes and in reciprocation these microbes help the plant in several ways. A great deal of knowledge is now available on the mechanisms of action of plant growth promoting microbes in forming association with their partner plant and benefitting it. With ever increasing population and to achieve food security it has become utmost necessary to utilize these friendly microbes to enhance the crop yield and quality in an ecofriendly and sustainable manner. We already know about the huge negative impact of chemicals used in agriculture on the humans and the ecosystems as whole. 'Plant Microbes Symbiosis - Applied Facets' provides a comprehensive knowledge on practical, functional and purposeful utility of plant-microbe interactions. The book reviews the utilization of beneficial microbes for crop yield enhancement and protection against diseases caused by phytopathogens and nutrient deficiencies. The tome also reviews the utility of plant growth promoting microbes in helping the plants to deal with abiotic stresses imposed by climate change and anthropogenic activities. The book showcases how plant-microbe interactions are or can be utilized for reclamation of stressed soils and degradation of pollutants in a most effective and environment friendly manner. It also ascertains the reasons for the below par performance of the microbial based inoculants. The utilization of biotechnological tools for development of next generation bioformulations to combat the new challenges and overcome past hurdles has been discussed. This wonderful association between plants and microbes if used properly will not only enhance the crop yields and reclaim barren lands but also make our planet a better place to live on for all of its habitants.
This volume explains the recent findings on the mutualistic plant-microbe interactions and how they can be utilized for sustainable agriculture practices including land reclamation. The book covers mainly plant growth promoting microorganisms (PGPMs) including both the symbiotic bacteria and fungi and their role in mobilization of nutrients, providing protection to the crops from phytopathogens and abiotic stresses. PGPMs play important roles in survival and health of the plant. These useful microorganisms provide plants with nutrients, protect them from pathogens and help them combat abiotic stresses. It is important that these mutualistic interactions between plant and soil microbes are well understood so as to develop reliable products in the form of biostimulants and biopesticides, as well as managing biotic and abiotic stresses in crops. Apart from enhancing crop productivity plant-microbe interactions can also perform activities such as reclamation of degraded lands, degradation of pollutants and remediation of saline or marginal lands. This book is of interest to teachers, researchers, plant scientists and microbiologists. Also, the book serves as additional reading material for undergraduate and graduate students of agriculture, microbiology, biotechnology, ecology, soil science and environmental sciences.
Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR can help meet the expected demand for global agricultural productivity to feed the world's booming population, which is predicted to reach roughly 9 billion by 2050. However, to do so, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.
This edited book explores the three interrelated concepts - biomass, bioenergy, and bioeconomy - from the point of view of sustainable advanced conversion processes. It elaborates on processing routes, i.e., how biomass from various sources can be converted into bioenergy like bioethanol, biodiesel, biobutanol, and biogas. Chapters are organized into three sections - "Biomass," "Bioenergy," and "Bioeconomy." The first section very much focuses on biomass-based global research trends and their utilization for future bioenergy options, very particular to microbial activities associated and their practically real-time challenges during lab to land approach. The second section deals with biomass-based applications like biodiesel, bioethanol, biobutanol, biohydrogen, and biomass cookstoves and their future perspectives and challenges. The past, present, and future trends of biomass-based research applications have been assessed and critically evaluated to make the gathered knowledge available in the simplest form for academicians and researchers. The third section focuses on biomass-based policies on implementation and governmental strategies needs a attention to make it smooth for social groups and communities too. The role and impacts of bioeconomy with biomass-based bioenergy options and applications are also targeted here. Sustainable Development Goals are addressed in this section to achieve three objectives (trio), i.e., social, economic, and ecological status, which are the need of the hour for bioeconomic security. Contributions of bioenergy to environmental security have also been addressed in this section, very particular to linkage of sustainable human development. This book is a useful compilation of latest information for researchers and teachers in bioenergy and microbiology. The book also serves as reading material for undergraduate and graduate students of environmental sciences, microbiology, and bioenergy.
Bioactive Microbial Metabolites: Scope and Challenges not only focuses on the identification, separation and purification of bioactive metabolites, the book also provides an understanding of the metabolic pathways for bioactive metabolites production that play an important role in modern healthcare as frontline treatments for many diseases. This is a valuable reference for research students, academicians and scientists in environmental microbiology and biotechnology, and for industry personnel related to microbiology/ biotechnology. The science discussed herein plays an important role in expanding the market of antibiotics, food and agriculture but also offers eco-friendly, safer and profitable solutions to respective industries.
Plants form mutualistic association with various microorganisms, particularly in the rhizosphere region. The association benefits both the partners in a number of ways. A single plant can support the growth of diverse microbes and in reciprocation these microbes help the plant in several ways. A great deal of knowledge is now available on the mechanisms of action of plant growth promoting microbes in forming association with their partner plant and benefitting it. With ever increasing population and to achieve food security it has become utmost necessary to utilize these friendly microbes to enhance the crop yield and quality in an ecofriendly and sustainable manner. We already know about the huge negative impact of chemicals used in agriculture on the humans and the ecosystems as whole. ‘Plant Microbes Symbiosis – Applied Facets’ provides a comprehensive knowledge on practical, functional and purposeful utility of plant-microbe interactions. The book reviews the utilization of beneficial microbes for crop yield enhancement and protection against diseases caused by phytopathogens and nutrient deficiencies. The tome also reviews the utility of plant growth promoting microbes in helping the plants to deal with abiotic stresses imposed by climate change and anthropogenic activities. The book showcases how plant-microbe interactions are or can be utilized for reclamation of stressed soils and degradation of pollutants in a most effective and environment friendly manner. It also ascertains the reasons for the below par performance of the microbial based inoculants. The utilization of biotechnological tools for development of next generation bioformulations to combat the new challenges and overcome past hurdles has been discussed. This wonderful association between plants and microbes if used properly will not only enhance the crop yields and reclaim barren lands but also make our planet a better place to live on for all of its habitants.
Plant microbe interaction is a complex relationship that can have various beneficial impacts on both the communities. An urgent need of today's world is to get high crop yields in an ecofriendly manner. Utilization of beneficial and multifaceted plant growth promoting (PGP) microorganisms can solve the problem of getting enhanced yields without disturbing the ecosystem thus leading to sustainability. For this to achieve understanding of the intricate details of how the beneficial microbes form associations with the host plant and sustain that for millions of years must be known. A holistic approach is required wherein the diversity of microbes associated with plant and the network of mechanisms by which they benefit the host must be studied and utilized. 'Plant Microbe Symbiosis - Fundamentals and Advances' provides a comprehensive understanding of positive interactions that occur between plant and microorganisms and their utilization in the fields. The book reviews the enormous diversity of plant associated microbes, the dialog between plant-microbes-microbes and mechanisms of action of PGP microbes. Utilization of PGPRs as nutrient providers, in combating phytopathogens and ameliorating the stressed and polluted soils is also explained. Importantly, the book also throws light on the unanswered questions and future direction of research in the field. It illustrates how the basic knowledge can be amalgamated with advanced technology to design the future bioformulations.
Extremophiles belong to members of all three domains of life, i.e., bacteria, archaea, and eukarya. However, a high proportion of extremophiles are archaea and bacteria. These microbes live under chemical and physical extremes that are usually lethal to cellular molecules, yet they not only manage to survive but even thrive in such conditions. Extremophiles have important practical and industrial uses. They are a valuable source of industrially important enzymes also known as extremozymes. Recent research has revealed that extremozymes have unique structural features essential for biocatalysis under extreme conditions. Extremozymes have great commercial values and are known for their potential use in biotechnology, biomining, and bioremediation. Extremozymes and their Industrial Applications highlights the current and topical areas of research in this rapidly growing field of extremophiles and their applications. Expert researchers from around the globe are trying to uncover the underlying mechanisms responsible for their specific adaptations under extreme environments. The topics covered include the ability of acidophiles to maintain a neutral intracellular pH, the way psychrophiles "loosen up" their proteins at low temperatures, and other equally ingenious adaptations and metabolic strategies that extremophiles use to survive and flourish under extreme conditions. Extremozymes and their Industrial Applications also covers the established biotechnological uses of extremophiles and the most recent and novel applications, including their exploitation for enzyme production. Potential use of extremophiles and their enzymes in the generation of sustainable energy, biomass conversion, agro-waste processing, and biocontrol of phytopathogens is also covered. The book will be very useful for researchers and students working in the area of industrial microbiology and biotechnology, and microbial ecologists. It is also recommended reference text for those interested in the biochemistry and microbiology of extremophiles, as well as for those interested in bioprospecting, biomining, biofuels, and biodegradation.
This volume explains the recent findings on the mutualistic plant–microbe interactions and how they can be utilized for sustainable agriculture practices including land reclamation. The book covers mainly plant growth promoting microorganisms (PGPMs) including both the symbiotic bacteria and fungi and their role in mobilization of nutrients, providing protection to the crops from phytopathogens and abiotic stresses. PGPMs play important roles in survival and health of the plant. These useful microorganisms provide plants with nutrients, protect them from pathogens and help them combat abiotic stresses. It is important that these mutualistic interactions between plant and soil microbes are well understood so as to develop reliable products in the form of biostimulants and biopesticides, as well as managing biotic and abiotic stresses in crops. Apart from enhancing crop productivity plant–microbe interactions can also perform activities such as reclamation of degraded lands, degradation of pollutants and remediation of saline or marginal lands. This book is of interest to teachers, researchers, plant scientists and microbiologists. Also, the book serves as additional reading material for undergraduate and graduate students of agriculture, microbiology, biotechnology, ecology, soil science and environmental sciences.Â
Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR can help meet the expected demand for global agricultural productivity to feed the world's booming population, which is predicted to reach roughly 9 billion by 2050. However, to do so, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.
|
You may like...
|