Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
As modern technologies continue to transform and impact our society, Radio Frequency Identification has emerged as one of the top areas of study to do just that. Using its wireless data capturing technique and incredible capabilities such as automatic identification, tracking, handling large amounts of data, and flexibility in operation, RFID aims to revamp the new millennium. Advanced RFID Systems, Security, and Applications features a comprehensive collection of research provided by leading experts in both academia and industries. This leading reference source provides state-of-the- art development on RFID and its contents will be of the upmost use to students and researchers at all levels as well as technologists, planners, and policy makers. RFID technology is progressing into a new phase of development.
This vital new resource offers engineers and researchers a window on important new technology that will supersede the barcode and is destined to change the face of logistics and product data handling. In the last two decades, radio-frequency identification has grown fast, with accelerated take-up of RFID into the mainstream through its adoption by key users such as Wal-Mart, K-Mart and the US Department of Defense. RFID has many potential applications due to its flexibility, capability to operate out of line of sight, and its high data-carrying capacity. Yet despite optimistic projections of a market worth $25 billion by 2018, potential users are concerned about costs and investment returns. Clearly demonstrating the need for a fully printable chipless RFID tag as well as a powerful and efficient reader to assimilate the tag's data, this book moves on to describe both. Introducing the general concepts in the field including technical data, it then describes how a chipless RFID tag can be made using a planar disc-loaded monopole antenna and an asymmetrical coupled spiral multi-resonator. The tag encodes data via the "spectral signature" technique and is now in its third-generation version with an ultra-wide band (UWB) reader operating at between 5 and 10.7GHz.
Radio Frequency Identification (RFID) is a wireless tracking and data capturing technique for automatic identification, tracking, security surveillance, logistics, and supply chain management. RFID tags, which have been successfully employed in many industries including retail and healthcare, have provided a multitude of benefits but also currently remain very costly. Chipless and Conventional Radio Frequency Identification: Systems for Ubiquitous Tagging explores the use of conventional RFID technology as well as chipless RFID technology, which provides a cheaper method of implementation, opening many doors for a variety of applications and industries. This practical reference, designed for researchers and practitioners, investigates the growing field of RFID and its promising future.
This book presents the design, development and field trials of radio frequency based wireless monitoring system for sleep apnoea patients. It contains 4 major areas including general background of wireless monitoring technology and MIMO in wireless body area network (WBAN), microwave hardware designs, virtual MIMO in WBAN and hardware system level implementation and field trials. At components level, this book presents the design theory, process and examples of bandpass filters, lowpass filters, low profile patch antennas, power amplifiers and oscillators which are the key elements in transducer designs in the body area network and cooperative communication wireless sensor network system. At system level, this book features the hardware integration, field trial and network coding techniques. This book also gives a presentation of virtual MIMO applications, e.g. MIMO implementation using FPGA, correlation coefficient measurement. The book will create impact in the fields of wireless monitoring technology in biomedical engineering, which have been growing exponentially.
This book presents the design, development and field trials of radio frequency based wireless monitoring system for sleep apnoea patients. It contains 4 major areas including general background of wireless monitoring technology and MIMO in wireless body area network (WBAN), microwave hardware designs, virtual MIMO in WBAN and hardware system level implementation and field trials. At components level, this book presents the design theory, process and examples of bandpass filters, lowpass filters, low profile patch antennas, power amplifiers and oscillators which are the key elements in transducer designs in the body area network and cooperative communication wireless sensor network system. At system level, this book features the hardware integration, field trial and network coding techniques. This book also gives a presentation of virtual MIMO applications, e.g. MIMO implementation using FPGA, correlation coefficient measurement. The book will create impact in the fields of wireless monitoring technology in biomedical engineering, which have been growing exponentially.
This vital new resource offers engineers and researchers a window on important new technology that will supersede the barcode and is destined to change the face of logistics and product data handling. In the last two decades, radio-frequency identification has grown fast, with accelerated take-up of RFID into the mainstream through its adoption by key users such as Wal-Mart, K-Mart and the US Department of Defense. RFID has many potential applications due to its flexibility, capability to operate out of line of sight, and its high data-carrying capacity. Yet despite optimistic projections of a market worth $25 billion by 2018, potential users are concerned about costs and investment returns. Clearly demonstrating the need for a fully printable chipless RFID tag as well as a powerful and efficient reader to assimilate the tag's data, this book moves on to describe both. Introducing the general concepts in the field including technical data, it then describes how a chipless RFID tag can be made using a planar disc-loaded monopole antenna and an asymmetrical coupled spiral multi-resonator. The tag encodes data via the "spectral signature" technique and is now in its third-generation version with an ultra-wide band (UWB) reader operating at between 5 and 10.7GHz.
The "Handbook of Smart Antennas for RFID Systems" is a single comprehensive reference on the smart antenna technologies applied to RFID. This book will provide a timely reference book for researchers and students in the areas of both smart antennas and RFID technologies. It is the first book to combine two of the most important wireless technologies together in one book. The handbook will feature chapters by leading experts in both academia and industry offering an in-depth description of terminologies and concepts related to smart antennas in various RFID systems applications. Some topics are: adaptive beamforming for RFID smart antennas, multiuser interference suppression in RFID tag reading, phased array antennas for RFID applications, smart antennas in wireless systems and market analysis and case studies of RFID smart antennas. This handbook will cover the latest achievements in the designs and applications for smart antennas for RFID as well as the basic concepts, terms, protocols, systems architectures and case studies in smart antennas for RFID readers and tags.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
|