![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
It is estimated that a large fraction of natural gas reserves are found in locations from where transport is not economical. If these isolated natural gas reserves could be converted to synthetic fuels, they would generate around 250 billion barrels of synthetic oil-a quantity equal to one-third of the Middle East's proven oil reserves. Small-Scale Gas to Liquid Fuel Synthesis explores next-generation technologies geared toward overcoming the significant cost and technical barriers prohibiting the extensive use of conventional gas to liquid (GTL) processes for the exploitation of small and/or isolated natural gas reservoirs. The book highlights key research activities in the framework of two large European projects-Innovative Catalytic Technologies & Materials for Next Gas to Liquid Processes (NEXT-GTL) and Oxidative Coupling of Methane followed by Oligomerization to Liquids (OCMOL)-examining novel technical developments that reduce the costs associated with air fractioning and syngas production. Featuring contributions from internationally respected experts, Small-Scale Gas to Liquid Fuel Synthesis discusses innovative GTL technologies based on recent advances in catalytic membrane systems, reaction engineering, and process design. The book provides academic and industrial researchers with a concise presentation of the current state of the art of low-cost, energy-efficient GTL technologies for small-scale applications.
Having successfully replaced elements used in traditional, pollution-prone, energy-consuming separation processes, nanoporous materials play an important role in chemical processing. Although their unique structural or surface physicochemical properties can, to an extent, be tailored to meet specific process-related requirements, the task of characterizing them completely is still a difficult and frequently controversial problem. Nanoporous Materials: Advanced Techniques for Characterization, Modeling, and Processing outlines existing and expected innovations in the combination of characterization and modeling techniques used to distinguish, monitor, and control the evolution of properties in nanoporous sorbents, catalysts, and membranes during their synthesis and utilization in several important energy processes. Providing broad coverage of the subject to make it useful for academic and industrial researchers from different disciplines and backgrounds, this book: Presents the basic principles and major applications of key characterization techniques-from diffraction and spectroscopy to calorimetry and permeability Explores computer simulation techniques, an indispensable complement to the combination of the aforementioned analytical techniques Covers the fundamentals and the recent advances in sorption, membrane, and catalyst processes Describes two characteristic case studies on emerging areas of application of porous solids in the fields of gas-to-liquid conversion and hydrogen storage This reference takes a detailed approach to the subject, starting with basics, so that beginners or non-expert readers can learn and apply presented fundamentals and examples to their work. Organized into well-focused sections written by internationally known experts, this book includes case studies, end-of-chapter problems, and illustrative video presentations of basic principles.
This book disseminates and discusses relevant best case examples and research practices that show how nanomaterial research and related engineering concepts may provide answers and viable solutions to a variety of socioeconomic issues and concerns. The first section is dedicated to the development of new materials and their characterization. The second section addresses modeling and scale transition (from and to nanoscale) processes, and the third section presents applications in the environmental and energy sectors. Nanoporous Materials for Energy and the Environment covers a wide selection of subjects ranging from modeling and material design to the preparation and use of nanoporous catalysts, adsorbents, and membranes. The topics discussed include proton exchange membranes; carbon nanotube (CNT)-based electrodes for fuel cells; advanced design of lithium batteries and supercapacitors using CNTs; multifunctional catalyst for biomass conversion; advanced characterization and modeling of nanomaterials and membranes (including gas transport and multiscale modeling); use of membranes in energy applications, gas treatment, and separations; and development of multifunctional photoactive membranes and of nanoordered 2D photoactive titania films and membranes.
It is estimated that a large fraction of natural gas reserves are found in locations from where transport is not economical. If these isolated natural gas reserves could be converted to synthetic fuels, they would generate around 250 billion barrels of synthetic oil-a quantity equal to one-third of the Middle East's proven oil reserves. Small-Scale Gas to Liquid Fuel Synthesis explores next-generation technologies geared toward overcoming the significant cost and technical barriers prohibiting the extensive use of conventional gas to liquid (GTL) processes for the exploitation of small and/or isolated natural gas reservoirs. The book highlights key research activities in the framework of two large European projects-Innovative Catalytic Technologies & Materials for Next Gas to Liquid Processes (NEXT-GTL) and Oxidative Coupling of Methane followed by Oligomerization to Liquids (OCMOL)-examining novel technical developments that reduce the costs associated with air fractioning and syngas production. Featuring contributions from internationally respected experts, Small-Scale Gas to Liquid Fuel Synthesis discusses innovative GTL technologies based on recent advances in catalytic membrane systems, reaction engineering, and process design. The book provides academic and industrial researchers with a concise presentation of the current state of the art of low-cost, energy-efficient GTL technologies for small-scale applications.
Having successfully replaced elements used in traditional, pollution-prone, energy-consuming separation processes, nanoporous materials play an important role in chemical processing. Although their unique structural or surface physicochemical properties can, to an extent, be tailored to meet specific process-related requirements, the task of characterizing them completely is still a difficult and frequently controversial problem. Nanoporous Materials: Advanced Techniques for Characterization, Modeling, and Processing outlines existing and expected innovations in the combination of characterization and modeling techniques used to distinguish, monitor, and control the evolution of properties in nanoporous sorbents, catalysts, and membranes during their synthesis and utilization in several important energy processes. Providing broad coverage of the subject to make it useful for academic and industrial researchers from different disciplines and backgrounds, this book: * Presents the basic principles and major applications of key characterization techniques -- from diffraction and spectroscopy to calorimetry and permeability * Explores computer simulation techniques, an indispensable complement to the combination of the aforementioned analytical techniques * Covers the fundamentals and the recent advances in sorption, membrane, and catalyst processes * Describes two characteristic case studies on emerging areas of application of porous solids in the fields of gas-to-liquid conversion and hydrogen storage This reference takes a detailed approach to the subject, starting with basics, so that beginners or non-expert readers can learn and apply presented fundamentals and examples to their work. Organized into well-focused sections written by internationally known experts, this book includes case studies, end-of-chapter problems, and illustrative video presentations of basic principles.
|
![]() ![]() You may like...
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
|