Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
Multiscale modeling is becoming essential for accurate, rapid simulation in science and engineering. This book presents the results of three decades of research on multiscale modeling in process engineering from principles to application, and its generalization for different fields. This book considers the universality of meso-scale phenomena for the first time, and provides insight into the emerging discipline that unifies them, meso-science, as well as new perspectives for virtual process engineering. Multiscale modeling is applied in areas including: multiphase flow and fluid dynamicschemical, biochemical and process engineeringmineral processing and metallurgical engineeringenergy and resourcesmaterials science and engineering Jinghai Li is Vice-President of the Chinese Academy of Sciences (CAS), a professor at the Institute of Process Engineering, CAS, and leader of the EMMS (Energy-minimizing multiscale) Group. Wei Ge, Wei Wang, Ning Yang and Junwu Wang are professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Xinhua Liu, Limin Wang, Xianfeng He and Xiaowei Wang are associate professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Mooson Kwauk is an emeritus director of the Institute of Process Engineering, CAS, and is an advisor to the EMMS Group.
"The first volume might be especially useful for specialists in its subject, but it also contains good expositions for nonspecialists." Acta Sci. Math. (Szeged) Contents: Notes on Subfactors and Statistical Mechanics (V F R Jones); Polynomial Invariants in Knot Theory (L H Kauffman); Algebras of Loops on Surfaces, Algebras of Knots, and Quantization (V G Turaev); Quantum Groups (L Faddeev et al.); Introduction to the Yang-Baxter Equation (M Jimbo); Integrable Systems Related to Braid Groups and Yang-Baxter Equation (T Kohno); The Yang-Baxter Relation: A New Tool for Knot Theory (Y Akutsu et al.); Akutsu-Wadati Link Polynomials from Feynman-Kauffman Diagrams (M-L Ge et al.); Quantum Field Theory and the Jones Polynomial (E Witten)
"The first volume might be especially useful for specialists in its subject, but it also contains good expositions for nonspecialists." Acta Sci. Math. (Szeged) Contents: Notes on Subfactors and Statistical Mechanics (V F R Jones); Polynomial Invariants in Knot Theory (L H Kauffman); Algebras of Loops on Surfaces, Algebras of Knots, and Quantization (V G Turaev); Quantum Groups (L Faddeev et al.); Introduction to the Yang-Baxter Equation (M Jimbo); Integrable Systems Related to Braid Groups and Yang-Baxter Equation (T Kohno); The Yang-Baxter Relation: A New Tool for Knot Theory (Y Akutsu et al.); Akutsu-Wadati Link Polynomials from Feynman-Kauffman Diagrams (M-L Ge et al.); Quantum Field Theory and the Jones Polynomial (E Witten)
This book is a distillation of Prof T Y Wu's fifty years of experience teaching quantum theory to many generations of physicists. Starting with chapters on classical physics and the old quantum theory, Prof Wu quickly develops Heisenberg's matrix mechanics and the Schroedinger equation. After a detailed treatment of the general formulation of quantum theory, standard discussions on Perturbation Theory and the Hydrogen Atom follow. A fairly exhaustive treatment of the Zeeman effect is to be found in these chapter. Many electron atoms are treated expertly. The former is treated with great depth; the latter is a good introduction to the subject.
Lee Kuan Yew through the Eyes of Chinese Scholars is a compilation of essays by highly-respected Chinese scholars in which they evaluate the life, work and philosophy of Lee Kuan Yew, founding Prime Minister of Singapore. Presenting a range of views from a uniquely Chinese/Asian perspective, this book provides valuable insights for those who wish to gain a fuller and deeper understanding of Lee Kuan Yew - the man, as well as Singapore - his nation.Marking the momentous event of his death as well as the 50th anniversary of Singapore's independence in 2015, this compilation reflects both the high regard in which Lee Kuan Yew is held across the Chinese-speaking world as well as the reservations of a few. The contributors are all ethnic Chinese from different academic disciplines ranging from a Nobel laureate in physics, Chen-Ning Yang, to historians, economists and political scientists. They include Singaporeans such as Wang Gungwu and Chew Cheng Hai, as well as scholars from China, the US and Hong Kong such as Yongnian Zheng, Ying-Shih Yu, Lawrence Lau and Hang-Chi Lam among others.Originally published in Chinese, this English translation makes the material accessible to a wider English-reading audience.
Lee Kuan Yew through the Eyes of Chinese Scholars is a compilation of essays by highly-respected Chinese scholars in which they evaluate the life, work and philosophy of Lee Kuan Yew, founding Prime Minister of Singapore. Presenting a range of views from a uniquely Chinese/Asian perspective, this book provides valuable insights for those who wish to gain a fuller and deeper understanding of Lee Kuan Yew - the man, as well as Singapore - his nation.Marking the momentous event of his death as well as the 50th anniversary of Singapore's independence in 2015, this compilation reflects both the high regard in which Lee Kuan Yew is held across the Chinese-speaking world as well as the reservations of a few. The contributors are all ethnic Chinese from different academic disciplines ranging from a Nobel laureate in physics, Chen-Ning Yang, to historians, economists and political scientists. They include Singaporeans such as Wang Gungwu and Chew Cheng Hai, as well as scholars from China, the US and Hong Kong such as Yongnian Zheng, Ying-Shih Yu, Lawrence Lau and Hang-Chi Lam among others.Originally published in Chinese, this English translation makes the material accessible to a wider English-reading audience.
Multiscale modeling is becoming essential for accurate, rapid simulation in science and engineering. This book presents the results of three decades of research on multiscale modeling in process engineering from principles to application, and its generalization for different fields. This book considers the universality of meso-scale phenomena for the first time, and provides insight into the emerging discipline that unifies them, meso-science, as well as new perspectives for virtual process engineering. Multiscale modeling is applied in areas including: multiphase flow and fluid dynamics chemical, biochemical and process engineering mineral processing and metallurgical engineering energy and resources materials science and engineering Jinghai Li is Vice-President of the Chinese Academy of Sciences (CAS), a professor at the Institute of Process Engineering, CAS, and leader of the EMMS (Energy-minimizing multiscale) Group. Wei Ge, Wei Wang, Ning Yang and Junwu Wang are professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Xinhua Liu, Limin Wang, Xianfeng He and Xiaowei Wang are associate professors at the EMMS Group, part of the Institute of Process Engineering, CAS. Mooson Kwauk is an emeritus director of the Institute of Process Engineering, CAS, and is an advisor to the EMMS Group.
'The book is an engaging and influential collection of significant contributions from an assembly of world expert leaders and pioneers from different fields, working at the interface between topology and physics or applications of topology to physical systems ... The book explores many interesting and novel topics that lie at the intersection between gravity, quantum fields, condensed matter, physical cosmology and topology ... A rich, well-organized, and comprehensive overview of remarkable and insightful connections between physics and topology is here made available to the physics reader.'Contemporary PhysicsSince its birth in Poincare's seminal 1894 'Analysis Situs', topology has become a cornerstone of mathematics. As with all beautiful mathematical concepts, topology inevitably - resonating with that Wignerian principle of the effectiveness of mathematics in the natural sciences - finds its prominent role in physics. From Chern-Simons theory to topological quantum field theory, from knot invariants to Calabi-Yau compactification in string theory, from spacetime topology in cosmology to the recent Nobel Prize winning work on topological insulators, the interactions between topology and physics have been a triumph over the past few decades.In this eponymous volume, we are honoured to have contributions from an assembly of grand masters of the field, guiding us with their world-renowned expertise on the subject of the interplay between 'Topology' and 'Physics'. Beginning with a preface by Chen Ning Yang on his recollections of the early days, we proceed to a novel view of nuclei from the perspective of complex geometry by Sir Michael Atiyah and Nick Manton, followed by an entree toward recent developments in two-dimensional gravity and intersection theory on the moduli space of Riemann surfaces by Robbert Dijkgraaf and Edward Witten; a study of Majorana fermions and relations to the Braid group by Louis H Kauffman; a pioneering investigation on arithmetic gauge theory by Minhyong Kim; an anecdote-enriched review of singularity theorems in black-hole physics by Sir Roger Penrose; an adventure beyond anyons by Zhenghan Wang; an apercu on topological insulators from first-principle calculations by Haijun Zhang and Shou-Cheng Zhang; finishing with synopsis on quantum information theory as one of the four revolutions in physics and the second quantum revolution by Xiao-Gang Wen. We hope that this book will serve to inspire the research community.
5G NR and Enhancements: From R15 to R16 introduces 5G standards, along with the 5G standardization procedure. The pros and cons of this technical option are reviewed, with the reason why the solution selected explained. The book's authors are 3GPP delegates who have been working on 4G/5G standardization for over 10 years. Their experience with the 5G standardization process will help readers understand the technology. Thousands of 3GPP papers and dozens of meeting minutes are also included to help explain how the 5G stand came into form.
Dr. Yang reviews the history of our knowledge of the elementary particles, and shows how theory and experiment interact to extend human knowledge. Originally published in 1961. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Dr. Yang reviews the history of our knowledge of the elementary particles, and shows how theory and experiment interact to extend human knowledge. Originally published in 1961. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
'The book is an engaging and influential collection of significant contributions from an assembly of world expert leaders and pioneers from different fields, working at the interface between topology and physics or applications of topology to physical systems ... The book explores many interesting and novel topics that lie at the intersection between gravity, quantum fields, condensed matter, physical cosmology and topology ... A rich, well-organized, and comprehensive overview of remarkable and insightful connections between physics and topology is here made available to the physics reader.'Contemporary PhysicsSince its birth in Poincare's seminal 1894 'Analysis Situs', topology has become a cornerstone of mathematics. As with all beautiful mathematical concepts, topology inevitably - resonating with that Wignerian principle of the effectiveness of mathematics in the natural sciences - finds its prominent role in physics. From Chern-Simons theory to topological quantum field theory, from knot invariants to Calabi-Yau compactification in string theory, from spacetime topology in cosmology to the recent Nobel Prize winning work on topological insulators, the interactions between topology and physics have been a triumph over the past few decades.In this eponymous volume, we are honoured to have contributions from an assembly of grand masters of the field, guiding us with their world-renowned expertise on the subject of the interplay between 'Topology' and 'Physics'. Beginning with a preface by Chen Ning Yang on his recollections of the early days, we proceed to a novel view of nuclei from the perspective of complex geometry by Sir Michael Atiyah and Nick Manton, followed by an entree toward recent developments in two-dimensional gravity and intersection theory on the moduli space of Riemann surfaces by Robbert Dijkgraaf and Edward Witten; a study of Majorana fermions and relations to the Braid group by Louis H Kauffman; a pioneering investigation on arithmetic gauge theory by Minhyong Kim; an anecdote-enriched review of singularity theorems in black-hole physics by Sir Roger Penrose; an adventure beyond anyons by Zhenghan Wang; an apercu on topological insulators from first-principle calculations by Haijun Zhang and Shou-Cheng Zhang; finishing with synopsis on quantum information theory as one of the four revolutions in physics and the second quantum revolution by Xiao-Gang Wen. We hope that this book will serve to inspire the research community.
Multi-cellular organisms eliminate individual cells through a self-destruct process known as apoptosis. Apoptosis is critical for proper development and maintenance of tissue homeostasis. The importance of this process is highlighted by the fact that too much or too little apoptosis is the underlying cause of pathologies such as cancer, autoimmune diseases (e.g., lupus, arthritis), and neurodegenerative disorders (e.g., Parkinson's, Alzheimer's). In the early days, apoptotic cells were identified strictly by cell morphology. Now we know that biochemical signatures define a number of death programs, of which apoptosis is the most widely understood. In this review, we discuss genetic insights gained from C. elegans, the importance of caspases, engulfment of apoptotic cells, apoptotic signals, the role of mitochondria, the Bcl-2 family, and the link between dysfunctional apoptosis and disease. Within each topic, we highlight landmark studies that contributed to our current understanding of apoptosis. All together, this research exemplifies tremendous scientific synergy between the disciplines of genetics, biochemistry, developmental cell biology, and structural biology. Continued exploration into mechanisms that regulate apoptosis will undoubtedly lead to insights into disease processes with potential therapeutic strategies.
|
You may like...
Fantastic Beasts 3 - The Secrets Of…
Eddie Redmayne, Jude Law, …
Blu-ray disc
(1)
R155 Discovery Miles 1 550
|