Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Water is essential for life and without water no life exists. The liquid sur- rounding of an aqueous solution is the conditio sine qua non for most of the physiological responses and as such, water is as decisive for the occurrence of a single enzymatic reaction as it is for the global zonation of world vegetation. It is no wonder that scientists since early times have made every effort to describe and understand the functional interrelationships between water and the phe- nomenon of life. During the past half of this century, these endeavours in the field of botany have been marked by steps which might be symbolized by a series of books such as "The plant in relation to water" (1. Maximov, 1929), and "Die Hydratur der Pflanze in ihrer physiologisch-6kologischen Bedeutung" (H. Walter, 1931), then "Pflanze und Wasser" (Vol. III of the Encyclopedia of Plant Physiology, edited by O. Stocker, 1956), and "Plant-water relations" (R. O. Slatyer, 1967), or the treatment of "Displacement of water and its control of biochemical reactions" (S. Levin. 1974).
O.L. LANGE, P.S. NOBEL, C.B. OSMOND, and H. ZIEGLER Growth, development and reproductive success of individual plants depend on the interaction, within tolerance limits, of the factors in the physical, chemical and biological environment. The first two volumes of this series addressed fea tures of the physical environment (Vol. 12A) and the special responses of land plants as they relate to water use and carbon dioxide assimilation (Vol. 12B). In this volume we consider specific aspects of the chemical and biological envi ronment, and whereas the previous volumes were primarily concerned with the atmospheric interactions, our emphasis here shifts very much to the soil. This complex medium for plant growth was briefly reviewed in Chapter 17, Volume 12A. Since it is difficult to determine the precise physical and chemical interactions in the soil, it is even more difficult to determine the important biological interactions among organisms. Nevertheless there is growing aware ness of the significance of these interactions and their effects on physiological processes in the individual plant."
O. L. LANGE, P. S. NOBEL, C. B. OSMOND, and H. ZIEGLER In the last volume of the series 'Physiological Plant Ecology' we have asked contributors to address the bases of ecosystem processes in terms of key plant physiological properties. It has often been suggested that it is not profitable to attempt analysis of complex living systems in terms of the properties of component individuals or populations, i. e., the whole is more than the sum of its parts. Nevertheless, assessments of ecological research over the last century show that other approaches are seldom more helpful. Although it is possible to describe complex systems of living organisms in holistic terms, the most useful descriptions are found in terms of the birth, growth and death of individ uals. This allows analysis of performance of the parts of the whole considering their synergistic and antagonistic interrelationships and is the basis for a synthe sis which elucidates the specific properties of a system. Thus it seems that the description of ecosystem processes is inevitably anchored in physiological under standing. If enquiry into complex living systems is to remain a scientific exercise, it must retain tangible links with physiology. Of course, as was emphasized in Vol. 12A, not all of our physiological understanding is required to explore ecosystem processes. For pragmatic purposes, the whole may be adequantely represented as a good deal less than the sum of its parts."
|
You may like...
Rich Dad Poor Dad - What the Rich Teach…
Robert T. Kiyosaki
Paperback
Dream Architecture - Build A Retirement…
Brittany Anderson, Bryan J Sweet
Hardcover
The Practical Guide For Wealthy Families…
Paul Roper, Roelf Odendaal, …
Paperback
|