0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (3)
  • R5,000 - R10,000 (3)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

The Physics of the Solar Corona and Transition Region (Hardcover, Reprinted from SOLAR PHYSICS, 190:1-2, 2000): Oddbjorn Engvold The Physics of the Solar Corona and Transition Region (Hardcover, Reprinted from SOLAR PHYSICS, 190:1-2, 2000)
Oddbjorn Engvold; Contributions by C. J. Schrijver, Neal E. Hurlburt; Edited by John W. Harvey
R5,538 Discovery Miles 55 380 Ships in 10 - 15 working days

Solar Physics publishes up to two Topical Issues per year that focus on areas of especially vigorous and active research. The present Topical Issue contains papers of recent results on the solar corona, as well as on the transition region and low solar wind. The majority of these papers, which were all refereed in accordance with the standards of Solar Physics, were presented in August 1999 at a workshop held in Monterey, California. The authors were offered the opportunity to present relevant parts of their contributions on an accompanying CD ROM of this Topical Issue. The Sun's magnetic field is responsible for the spectacularly dynamic and intri cate phenomenon that we call the corona. The past decade has seen an enormous increase in our understanding of this part of the solar outer atmosphere, both as a result of observations and because of rapid advances in numerical studies. The Yohkoh satellite has observed the Sun now for over eight years, producing spectac ular sequences of images that convey the complexity of the corona. The imaging and spectroscopic instruments on SOHO have added information on the cooler part of the corona. And since April of 1998 TRACE has given us very high resolution images of the 1-2 MK corona, at cadences that allow detailed observations of field oscillations, loop evolution, mass ejecta, etc.

Physics of the Solar Corona and Transition Region - Part II Proceedings of the Monterey Workshop, held in Monterey, California,... Physics of the Solar Corona and Transition Region - Part II Proceedings of the Monterey Workshop, held in Monterey, California, August 1999 (Hardcover, Reprinted from SOLAR PHYSICS, 193:1-2, 2001)
Oddbjorn Engvold, John W. Harvey, C. J. Schrijver, Neal E. Hurlburt
R5,503 Discovery Miles 55 030 Ships in 10 - 15 working days

Solar Physics publishes up to two TopicalIssues per year that focus on areas of especially vigorousand activeresearch. The present TopicalIssue containspapers of recent results on the solar corona, as well as on the transition region and low solar wind. The majority of these papers, which were all refereed in accordance withthe standards of Solar Physics, werepresentedin August 1999at a workshop heldin Monterey, California. TheSun's magneticfieldis responsibleforthe spectacularly dynamicand intri- cate phenomenonthat we call the corona. The past decade has seen an enormous increase in our understanding of this part of the solar outer atmosphere, both as a result of observations and because of rapid advances in numerical studies.The Yohkoh satellitehasobservedthe Sun nowfor overeightyears, producingspectac- ular sequences of images that conveythe complexity of the corona. The imaging andspectroscopic instrumentsonSOHOhaveaddedinformationonthecoolerpart of the corona. Andsince April of 1998TRACEhas givenus very high resolution imagesof the 1-2 MKcorona, atcadencesthat allowdetailedobservations of field oscillations, loopevolution, mass ejecta, etc. The papers of thisTopicalIssue revolvearoundone keytheme:the entire outer atmosphereof the Sun is intrinsicallydynamic, evolvingso rapidly that even the concept of a single local temperaturefor a single fluid often breaks down. More- over, the corona is an intrinsicallynonlinearand non-localmedium.These aspects are discussedin thisTopicalIssue, includingboth papers that reviewrecentdevel- opments(both basedon observations and on theoretical/numerical modeling), and original research papers based on observations from many different observatories. Weareverygratefulto the manyrefereeswhoweregivenlittletimeto respond, andto the staffofKluwerfor theproductionofthetopicalissuesandtheirreprints. Thepapers acceptedforthisTopicalIssueadduptosuchavolumethattheyhaveto be distributedovertwo TopicalIssues of SolarPhysics (December 1999and April 2000),which are reprintedin two bound volumes, of whichthis is the second.

Solar Prominences (Hardcover, 2015 ed.): Jean-Claude Vial, Oddbjorn Engvold Solar Prominences (Hardcover, 2015 ed.)
Jean-Claude Vial, Oddbjorn Engvold
R2,922 Discovery Miles 29 220 Ships in 10 - 15 working days

This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence "object" with some historical background on observations and instrumentation. In the next chapter, the various forms of prominences are described with a thorough attempt of classification. Their thermodynamic (and velocity) properties are then derived with emphasis on the methods (and their limits) used. This goes from the simplest optically thin case to the heavy radiative treatment of plasmas out of local thermodynamic equilibrium. The following chapters are devoted to the magnetic field measurements and indirect derivation. A new branch of diagnostic tools, the seismology, is presented along with some MHD basics. This allows to better understand the propagation of waves, the energy and force equilibria. Both small-scale and large-scale studies and their relationship are presented. The importance of the newly discovered cavities is stressed in the context of prominence destabilization. The issues of prominence formation and eruption, their connection with flares and Coronal Mass Ejections and their impact on the Earth are addressed on the basis of the latest results. Finally, an exciting new area of research is unveiled with the newly discovered evidence of similar manifestations in the Universe and their possible impact on the habitability of exoplanets. References to the basic physics (where necessary) are provided and the proposed web sites addresses will allow the reader to load exciting movies. The book is aimed at advanced students in astrophysics, post-graduates, solar physicists and more generally astrophysicists. Amateurs will enjoy the many new images which go with the text.

Solar Prominences (Paperback, Softcover reprint of the original 1st ed. 2015): Jean-Claude Vial, Oddbjorn Engvold Solar Prominences (Paperback, Softcover reprint of the original 1st ed. 2015)
Jean-Claude Vial, Oddbjorn Engvold
R4,172 Discovery Miles 41 720 Ships in 10 - 15 working days

This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence "object" with some historical background on observations and instrumentation. In the next chapter, the various forms of prominences are described with a thorough attempt of classification. Their thermodynamic (and velocity) properties are then derived with emphasis on the methods (and their limits) used. This goes from the simplest optically thin case to the heavy radiative treatment of plasmas out of local thermodynamic equilibrium. The following chapters are devoted to the magnetic field measurements and indirect derivation. A new branch of diagnostic tools, the seismology, is presented along with some MHD basics. This allows to better understand the propagation of waves, the energy and force equilibria. Both small-scale and large-scale studies and their relationship are presented. The importance of the newly discovered cavities is stressed in the context of prominence destabilization. The issues of prominence formation and eruption, their connection with flares and Coronal Mass Ejections and their impact on the Earth are addressed on the basis of the latest results. Finally, an exciting new area of research is unveiled with the newly discovered evidence of similar manifestations in the Universe and their possible impact on the habitability of exoplanets. References to the basic physics (where necessary) are provided and the proposed web sites addresses will allow the reader to load exciting movies. The book is aimed at advanced students in astrophysics, post-graduates, solar physicists and more generally astrophysicists. Amateurs will enjoy the many new images which go with the text.

Physics of the Solar Corona and Transition Region - Part II Proceedings of the Monterey Workshop, held in Monterey, California,... Physics of the Solar Corona and Transition Region - Part II Proceedings of the Monterey Workshop, held in Monterey, California, August 1999 (Paperback, 2001 ed.)
Oddbjorn Engvold, John W. Harvey, C. J. Schrijver, Neal E. Hurlburt
R5,458 Discovery Miles 54 580 Ships in 10 - 15 working days

Solar Physics publishes up to two TopicalIssues per year that focus on areas of especially vigorousand activeresearch. The present TopicalIssue containspapers of recent results on the solar corona, as well as on the transition region and low solar wind. The majority of these papers, which were all refereed in accordance withthe standards of Solar Physics, werepresentedin August 1999at a workshop heldin Monterey, California. TheSun's magneticfieldis responsibleforthe spectacularly dynamicand intri- cate phenomenonthat we call the corona. The past decade has seen an enormous increase in our understanding of this part of the solar outer atmosphere, both as a result of observations and because of rapid advances in numerical studies.The Yohkoh satellitehasobservedthe Sun nowfor overeightyears, producingspectac- ular sequences of images that conveythe complexity of the corona. The imaging andspectroscopic instrumentsonSOHOhaveaddedinformationonthecoolerpart of the corona. Andsince April of 1998TRACEhas givenus very high resolution imagesof the 1-2 MKcorona, atcadencesthat allowdetailedobservations of field oscillations, loopevolution, mass ejecta, etc. The papers of thisTopicalIssue revolvearoundone keytheme:the entire outer atmosphereof the Sun is intrinsicallydynamic, evolvingso rapidly that even the concept of a single local temperaturefor a single fluid often breaks down. More- over, the corona is an intrinsicallynonlinearand non-localmedium.These aspects are discussedin thisTopicalIssue, includingboth papers that reviewrecentdevel- opments(both basedon observations and on theoretical/numerical modeling), and original research papers based on observations from many different observatories. Weareverygratefulto the manyrefereeswhoweregivenlittletimeto respond, andto the staffofKluwerfor theproductionofthetopicalissuesandtheirreprints. Thepapers acceptedforthisTopicalIssueadduptosuchavolumethattheyhaveto be distributedovertwo TopicalIssues of SolarPhysics (December 1999and April 2000),which are reprintedin two bound volumes, of whichthis is the second.

The Sun as a Guide to Stellar Physics (Paperback): Oddbjorn Engvold, Jean-Claude Vial, Andrew Skumanich The Sun as a Guide to Stellar Physics (Paperback)
Oddbjorn Engvold, Jean-Claude Vial, Andrew Skumanich
R3,658 R3,370 Discovery Miles 33 700 Save R288 (8%) Ships in 12 - 17 working days

The Sun as a Guide to Stellar Physics illustrates the significance of the Sun in understanding stars through an examination of the discoveries and insights gained from solar physics research. Ranging from theories to modeling and from numerical simulations to instrumentation and data processing, the book provides an overview of what we currently understand and how the Sun can be a model for gaining further knowledge about stellar physics. Providing both updates on recent developments in solar physics and applications to stellar physics, this book strengthens the solar-stellar connection and summarizes what we know about the Sun for the stellar, space, and geophysics communities.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Mountain Backgammon - The Classic Game…
Lily Dyu R575 R460 Discovery Miles 4 600
Efekto 77300-B Nitrile Gloves (S)(Black)
R79 R63 Discovery Miles 630
Shield Engine Cleaner - Solvent Based…
R49 R45 Discovery Miles 450
Swiss Air Chef 5 Litre Air Fryer (1400…
 (1)
R1,999 Discovery Miles 19 990
Midnights
Taylor Swift CD R394 Discovery Miles 3 940
Konix Naruto Gamepad for Nintendo Switch…
R699 R599 Discovery Miles 5 990
Samurai Sword Murder - The Morne Harmse…
Nicole Engelbrecht Paperback R330 R284 Discovery Miles 2 840
Efekto Karbadust Insecticide Dusting…
R54 Discovery Miles 540
Microsoft Xbox Series X Console (1TB…
R14,999 Discovery Miles 149 990
Elecstor 30W In-Line UPS (Black)
 (1)
R1,099 R699 Discovery Miles 6 990

 

Partners