Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Volume II of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. Highlighted throughout are mathematical and computational apporaches to examine central problems in the life sciences, ranging from the organization principles of individual cells to the dynamics of large populations. The chapters are thematically organized into the following main areas: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods and education. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.
The aim of this book is to provide an introduction to the mathematical theory of infinite dimensional dynamical systems by focusing on a relatively simple, yet rich, class of examples, that is, those described by delay differential equations. It is a textbook giving detailed proofs and providing many exercises, which is intended both for self-study and for courses at a graduate level. The book would also be suitable as a reference for basic results. As the subtitle indicates, the book is about concepts, ideas, results and methods from linear functional analysis, complex function theory, the qualitative theory of dynamical systems and nonlinear analysis. After studying this book, the reader should have a working knowledge of applied functional analysis and dynamical systems.
The aim here is to provide an introduction to the mathematical theory of infinite dimensional dynamical systems by focusing on a relatively simple - yet rich - class of examples, delay differential equations. This textbook contains detailed proofs and many exercises, intended both for self-study and for courses at graduate level, as well as a reference for basic results. As the subtitle indicates, this book is about concepts, ideas, results and methods from linear functional analysis, complex function theory, the qualitative theory of dynamical systems and nonlinear analysis. The book provides the reader with a working knowledge of applied functional analysis and dynamical systems.
Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. "Mathematical Tools for Understanding Infectious Disease Dynamics" fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology. This comprehensive and accessible book also features numerous detailed exercises throughout; full elaborations to all exercises are provided. Covers the latest research in mathematical modeling of infectious disease epidemiology Integrates deterministic and stochastic approaches Teaches skills in model construction, analysis, inference, and interpretation Features numerous exercises and their detailed elaborations Motivated by real-world applications throughout
|
You may like...
The White Queen - The Complete Series
Rebecca Ferguson, Amanda Hale, …
Blu-ray disc
(4)
Rogue One: A Star Wars Story - Blu-Ray…
Felicity Jones, Diego Luna, …
Blu-ray disc
R382
Discovery Miles 3 820
|