Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 22 of 22 matches in All Departments
This volume addresses the latest results of the Major Water Program of the Chinese Government which aims at the restoration of polluted water environments and sustainable management of water resources in China. It specifically summarizes the results of the BMBF-CLIENT project "Management of Water Resources in Urban Catchments" and the related MoST project "Key Technologies and Management Modes for the Water Environmental Rehabilitation of a Lake City from the Catchment Viewpoint" in Chaohu. The project is conducted by the Helmholtz-Centre for Environmental Research UFZ, Technische Universitat Dresden, German and Chinese companies (WISUTEC, AMC, bbe Moldaenke, itwh, OpenGeoSys e.V., HC System and EWaters) in close cooperation with Tongji University, Nanjing Institute of Geography and Limnology of Academy of Sciences, Institute for Hydrobiology of the Chinese Academy of Sciences and the Chaohu Lake Management Authority. The book explains the development of concepts and solutions for sustained water quality improvement in Chaohu, combining urban water resource management, decentralized sanitation solutions, methods in water quality assurance, environmental information systems and groundwater modeling.
This book describes the huge efforts by the Chinese Government concerning the restoration and future sustainable management of Chinese water systems. It presents the results of a Sino-European joint project concerning the Songhuajiang-Liaohe River Basin (SLRB) in Northeast China conducted by the Chinese Research Academy of Environmental Sciences (CRAES), the Helmholtz Centre for Environmental Research - UFZ, Germany, and the Natural Environment Research Council as represented by the Centre for Ecology and Hydrology (CEH), UK. The book explains in great detail the development of risk assessment and corresponding management methods for (i) controlling water pollution, (ii) assessing river health and ecological restoration options, (iii) characterizing persistent organic pollutants (POPs), and (iv) protecting fragile groundwater resources. It also describes the implemented demonstration sites of SLRB during the project course as well as lessons learnt on efficient project management and the dissemination of knowledge and technologies.
The present book provides guidance to understanding complicated coupled processes based on the experimental data available and implementation of developed algorithms in numerical codes. Results of selected test cases in the fields of closed-form solutions (e.g., deformation processes), single processes (such as groundwater flow) as well as coupled processes are presented. It is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation with the community.
The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate chance. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.
Fluids, play an important role in environmental systems, appearing as surface water in rivers, lakes, and coastal regions or in the subsurface as well as in the atmosphere. Mechanics of environmental fluids is concerned with fluid motion, associated mass and heat transport in addition to deformation processes in subsurface systems. In this textbook the fundamental modelling approaches based on continuum mechanics for fluids in the environment are described, including porous media and turbulence. Numerical methods for solving the process governing equations and its object-oriented computer implementation are discussed and illustrated with examples. Finally the application of computer models in civil and environmental engineering is demonstrated.
This volume of the Chinese Water Systems subseries offers up-to-date and comprehensive information on various aspects of the Poyang Lake, the largest freshwater lake in China. Following a detailed introduction of the lake basin, the respective chapters present the findings of studies examining surface and subsurface hydrology, relationships between plant ecology and pollution of the wetlands, changes of land cover as well as the development of modern computational approaches to create Environmental Information Systems for water management. Moreover, the results are supplemented by a wealth of numerical calculations, tables, figures and photographs to make the research results more tangible. Closing with concise information on the "Research Centre for Environmental Information Science" (RCEIS), the book offers a valuable guide for researchers, teachers and professionals working in the areas of water environment, water security and ecological restoration. The projects have been supported by the Sino-German Centre for Science Promotion, the Helmholtz Association and the Chinese Academy of Sciences.
The book comprises the 3rd collection of benchmarks and examples for porous and fractured media mechanics. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to a wide area of applications in environmental engineering, such as geological waste deposition, geothermal energy utilization (shallow and deep systems), carbon capture and storage (CCS) as well as water resources management and hydrology. In order to assess the feasibility, safety as well as sustainability of geoenvironmental applications, model-based simulation is the only way to quantify future scenarios. This charges a huge responsibility concerning the reliability of conceptual models and computational tools. Benchmarking is an appropriate methodology to verify the quality and validate the concept of models based on best practices. Moreover, benchmarking and code comparison are building strong community links. The 3rd THMC benchmark book also introduces benchmark-based tutorials, therefore the subtitle is selected as "From Benchmarking to Tutoring". The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation. The new version of OGS-6 is introduced and first benchmarks are presented therein (see appendices).
This book presents a new suite of benchmarks for and examples of porous media mechanics collected over the last two years. It continues the assembly of benchmarks and examples for porous media mechanics published in 2014. The book covers various applications in the geosciences, geotechnics, geothermal energy, and geological waste deposition. The analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, and even climate change. In order to assess the feasibility and safety of geotechnical applications, process-based modelling is the only tool that can effectively quantify future scenarios, a fact which also creates a huge burden of responsibility concerning the reliability of computational tools. The book shows that benchmarking offers a suitable methodology for verifying the quality of modelling tools based on best practices, and together with code comparison fosters community efforts. It also provides a brief introduction to the DECOVALEX, SeSBench and MOMAS initiatives. This benchmark book is part of the OpenGeoSys initiative - an open source project designed to share knowledge and experience in environmental analysis and scientific computation.
This book describes the huge efforts by the Chinese Government concerning the restoration and future sustainable management of Chinese water systems. It presents the results of a Sino-European joint project concerning the Songhuajiang-Liaohe River Basin (SLRB) in Northeast China conducted by the Chinese Research Academy of Environmental Sciences (CRAES), the Helmholtz Centre for Environmental Research - UFZ, Germany, and the Natural Environment Research Council as represented by the Centre for Ecology and Hydrology (CEH), UK. The book explains in great detail the development of risk assessment and corresponding management methods for (i) controlling water pollution, (ii) assessing river health and ecological restoration options, (iii) characterizing persistent organic pollutants (POPs), and (iv) protecting fragile groundwater resources. It also describes the implemented demonstration sites of SLRB during the project course as well as lessons learnt on efficient project management and the dissemination of knowledge and technologies.
The book comprises the 3rd collection of benchmarks and examples for porous and fractured media mechanics. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to a wide area of applications in environmental engineering, such as geological waste deposition, geothermal energy utilization (shallow and deep systems), carbon capture and storage (CCS) as well as water resources management and hydrology. In order to assess the feasibility, safety as well as sustainability of geoenvironmental applications, model-based simulation is the only way to quantify future scenarios. This charges a huge responsibility concerning the reliability of conceptual models and computational tools. Benchmarking is an appropriate methodology to verify the quality and validate the concept of models based on best practices. Moreover, benchmarking and code comparison are building strong community links. The 3rd THMC benchmark book also introduces benchmark-based tutorials, therefore the subtitle is selected as "From Benchmarking to Tutoring". The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation. The new version of OGS-6 is introduced and first benchmarks are presented therein (see appendices).
This book presents a new suite of benchmarks for and examples of porous media mechanics collected over the last two years. It continues the assembly of benchmarks and examples for porous media mechanics published in 2014. The book covers various applications in the geosciences, geotechnics, geothermal energy, and geological waste deposition. The analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, and even climate change. In order to assess the feasibility and safety of geotechnical applications, process-based modelling is the only tool that can effectively quantify future scenarios, a fact which also creates a huge burden of responsibility concerning the reliability of computational tools. The book shows that benchmarking offers a suitable methodology for verifying the quality of modelling tools based on best practices, and together with code comparison fosters community efforts. It also provides a brief introduction to the DECOVALEX, SeSBench and MOMAS initiatives. This benchmark book is part of the OpenGeoSys initiative - an open source project designed to share knowledge and experience in environmental analysis and scientific computation.
Thermochemical gas-solid reactions, as well as adsorption processes, are currently of significant interest for the design of heat storage systems. This book provides detailed models of these reactions and processes that account for heat and mass transport, chemical and physical reactions, and possible local thermal non-equilibrium. The underlying scientific theory behind the models is explained, laboratory tests are simulated, and methods for high-performance computing are discussed. Applications ranging from seasonal domestic heat storage to diurnally operating systems in concentrating solar power facilities are considered in these models, which are not available through any other sources. Finally, an outlook on future developments highlights emerging technologies.
The present book provides guidance to understanding complicated coupled processes based on the experimental data available and implementation of developed algorithms in numerical codes. Results of selected test cases in the fields of closed-form solutions (e.g., deformation processes), single processes (such as groundwater flow) as well as coupled processes are presented. It is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation with the community.
The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate chance. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.
Fluids play an important role in environmental systems appearing as surface water in rivers, lakes, and coastal regions or in the subsurface as well as in the atmosphere. Mechanics of environmental fluids is concerned with fluid motion, associated mass and heat transport as well as deformation processes in subsurface systems. In this reference work the fundamental modelling approaches based on continuum mechanics for fluids in the environment are described, including porous media and turbulence. Numerical methods for solving the process governing equations as well as its object-oriented computer implementation are discussed and illustrated with examples. Finally, the application of computer models in civil and environmental engineering is demonstrated.
Dieses Handbuch besteht aus sieben Einzelbanden, die folgende Themen behandeln: Geofernerkundung, Stromungs- und Transportmodelle, Geologie, Geophysik, Geochemie, Tonmineralogie, Handlungsanweisungen. Als Grundlage diente den 37 beteiligten Forschungseinrichtungen und Firmen die Analyse von 28 Einzelvorhaben. Dabei wurden an ausgewahlten Teststandorten neue und bereits erprobte Verfahren gegenubergestellt, um so eine Auswahl der effektivsten und kostengunstigsten Methodenkombinationen zu erhalten. Von der Bundesanstalt fur Geowissenschaften und Rohstoffe berufene Wissenschaftler stellten aus den hierbei gewonnenen Erkenntnissen das vorliegende Werk zusammen und achteten darauf, dass auch wissenschaftliche Grundlagen und Hintergrundinformationen entsprechend berucksichtigt wurden."
This volume of the Chinese Water Systems subseries offers up-to-date and comprehensive information on various aspects of the Poyang Lake, the largest freshwater lake in China. Following a detailed introduction of the lake basin, the respective chapters present the findings of studies examining surface and subsurface hydrology, relationships between plant ecology and pollution of the wetlands, changes of land cover as well as the development of modern computational approaches to create Environmental Information Systems for water management. Moreover, the results are supplemented by a wealth of numerical calculations, tables, figures and photographs to make the research results more tangible. Closing with concise information on the "Research Centre for Environmental Information Science" (RCEIS), the book offers a valuable guide for researchers, teachers and professionals working in the areas of water environment, water security and ecological restoration. The projects have been supported by the Sino-German Centre for Science Promotion, the Helmholtz Association and the Chinese Academy of Sciences.
In this book, effective computational methods to facilitate those pivotal simulations using open-source software are introduced and discussed with a special focus on the coupled thermo-mechanical behavior of the rock salt. A cohesive coverage of applying geotechnical modeling to the subsurface storage of hydrogen produced from renewable energy sources is accompanied by specific, reproducible example simulations to provide the reader with direct access to this fascinating and important field. Energy carriers such as natural gas, hydrogen, oil, and even compressed air can be stored in subsurface geological formations such as depleted oil or gas reservoirs, aquifers, and caverns in salt rock. Many challenges have arisen in the design, safety and environmental impact assessment of such systems, not the least of which is that large-scale experimentation is not a feasible option. Therefore, simulation techniques are central to the design and risk assessment of these and similar geotechnical facilities.
This introduction to geothermal modeling deals with flow and heat transport processes in porous and fractured media related to geothermal energy applications. Following background coverage of geothermal resources and utilization in several countries, the basics of continuum mechanics for heat transport processes, as well as numerical methods for solving underlying governing equations are discussed. This examination forms the theoretical basis for five included step-by-step OpenGeoSys exercises, highlighting the most important computational areas within geothermal resource utilization, including heat diffusion, heat advection in porous and fractured media, and heat convection. The book concludes with an outlook on practical follow-up contributions investigating the numerical simulation of shallow and deep geothermal systems.
This tutorial on the application of the open-source software OpenGeoSys (OGS) in computational hydrology is based on a one-week training course at the Helmholtz Centre for Environmental Research in Leipzig, Germany. It provides general information regarding hydrological and groundwater flow modeling and the pre-processing and step-by-step model setups of a case study with OGS and related components such as the OGS Data Explorer. The tutorial also illustrates the application of pre- and post-processing tools such as ArcGIS and ParaView. This book is intended primarily for graduate students and applied scientists who deal with hydrological-system analysis and hydrological modeling. It is also a valuable source of information for practicing hydrologists wishing to further their understanding of the numerical modeling of coupled hydrological-hydrogeological systems. This tutorial is the first in a series that will present further OGS applications in environmental sciences.
This book is dedicated to the numerical modeling of shallow geothermal systems. The utilization of shallow geothermal energy involves the integration of multiple Borehole Heat Exchangers (BHE) with Ground Source Heat Pump (GSHP) systems to provide heating and cooling. The modeling practices explained in this book can improve the efficiency of these increasingly common systems. The book begins by explaining the basic theory of heat transport processes in man-made as well as natural media. . These techniques are then applied to the simulation of borehole heat exchangers and their interaction with the surrounding soil. The numerical and analytical models are verified against analytical solutions and measured data from a Thermal Response Test, and finally, a real test site is analyzed through the model and discussed with regard to BHE and GSHP system design and optimization.
Dieses Handbuch besteht aus sieben Einzelbanden, die folgende Themen behandeln: Geofernerkundung, Stromungs- und Transportmodelle, Geologie, Geophysik, Geochemie, Tonmineralogie, Handlungsanweisungen. Als Grundlage diente den 37 beteiligten Forschungseinrichtungen und Firmen die Analyse von 28 Einzelvorhaben. Dabei wurden an ausgewahlten Teststandorten neue und bereits erprobte Verfahren gegenubergestellt, um so eine Auswahl der effektivsten und kostengunstigsten Methodenkombinationen zu erhalten. Von der Bundesanstalt fur Geowissenschaften und Rohstoffe berufene Wissenschaftler stellten aus den hierbei gewonnenen Erkenntnissen das vorliegende Werk zusammen und achteten darauf, dass auch wissenschaftliche Grundlagen und Hintergrundinformationen entsprechend berucksichtigt wurden."
|
You may like...
Maze Runner: Chapter II - The Scorch…
Thomas Brodie-Sangster, Nathalie Emmanuel, …
Blu-ray disc
R32
Discovery Miles 320
|