Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Biosimulation is an approach to biomedical research and the treatment of patients in which computer modeling goes hand in hand with experimental and clinical work. The models are used to interprete the experimental results and to accumulate information from experiment to experiment. The book explains the concepts used in the modeling of biological phenomena and goes on to present a series of well-documented models of the regulation of various genetic, cellular and physiological processes. We discuss how the use of computer models makes it possible to optimize the treatment of cancer for individual patients and explains how models of interacting nerve cells can be used to design new treatments for patients with Parkinson's disease. We discuss how use of models in industry will allow existing knowledge to be effectively applied, and the book ends with a presentation of the views of the regulatory agencies.
This fascinating work is devoted to the fundamental phenomenon in physics synchronization that occurs in coupled non-linear dissipative oscillators. Examples of such systems range from mechanical clocks to population dynamics, from the human heart to neural networks. The main purpose of this book is to demonstrate that the complexity of synchronous patterns of real oscillating systems can be described in the framework of the general approach, and the authors study this phenomenon as applied to oscillations of different types, such as those with periodic, chaotic, noisy and noise-induced nature.
Biosimulation is an approach to biomedical research and the treatment of patients in which computer modeling goes hand in hand with experimental and clinical work. Constructed models are used to interpret experimental results and to accumulate information from experiment to experiment. This book explains the concepts used in the modeling of biological phenomena and goes on to present a series of well-documented models of the regulation of various genetic, cellular and physiological processes. The way how the use of computer models allows optimization of cancer treatment for individual patients is discussed and models of interacting nerve cells that can be used to design new treatments for patients with Parkinson's disease are explained. Furthermore this volume provides an overview on the use of models in industry, and presents the view of regulatory agencies on the topic.
This fascinating work is devoted to the fundamental phenomenon in physics - synchronization that occurs in coupled non-linear dissipative oscillators. Examples of such systems range from mechanical clocks to population dynamics, from the human heart to neural networks. The main purpose of this book is to demonstrate that the complexity of synchronous patterns of real oscillating systems can be described in the framework of the general approach, and the authors study this phenomenon as applied to oscillations of different types, such as those with periodic, chaotic, noisy and noise-induced nature.
|
You may like...
|