Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
Covering technological aspects as well as the suitability and
applicability of various kinds of uses, this handbook shows
optimization strategies, techniques and assembly pathways to
achieve the combination of complex, even three-dimensional
structures with simple manufacturing steps. The authors provide
information on markets, commercialization opportunities and aspects
of mass or large-scale production as well as design tools,
experimental techniques, novel materials, and ideas for future
improvements. Not only do they weigh up cost versus quantity, they
also consider CMOS and LIGA strategies.
Intended for wire-bonding and flip-chip packaging professionals and for scientists and engineers working in the field of mechanical microsensors, this practical monograph introduces novel measurement technologies that allow for in situ and real-time examination of physical processes during the packaging process or during subsequent reliability tests. The measurement system presented here makes possible measurements at formerly inaccessible packaging interconnects. For the first time it becomes possible to describe the wire-bonding process window in terms of the physical forces at the contact zone instead of the applied machine settings. This is significant for a deeper understanding and future development of these packaging processes. Applications of the sensor in the field of wire bonding and flip-chip characterization are also illustrated. The reader will gain much insight into the important field of interconnection technology in semiconductor packaging.
Inkjet-based Micromanufacturing Inkjet technology goes way beyond putting ink on paper: it enables simpler, faster and more reliable manufacturing processes in the fields of micro- and nanotechnology. Modern inkjet heads are per se precision instruments that deposit droplets of fluids on a variety of surfaces in programmable, repeating patterns, allowing, after suitable modifications and adaptations, the manufacturing of devices such as thin-film transistors, polymer-based displays and photovoltaic elements. Moreover, inkjet technology facilitates the large-scale production of flexible RFID transponders needed, eg, for automated logistics and miniaturized sensors for applications in health surveillance. The book gives an introduction to inkjet-based micromanufacturing, followed by an overview of the underlying theories and models, which provides the basis for a full understanding and a successful usage of inkjet-based methods in current microsystems research and development Overview of Inkjet-based Micromanufacturing: Thermal Inkjet Theory and Modeling Post-Printing Processes for Inorganic Inks for Plastic Electronics Applications Inkjet Ink Formulations Inkjet Fabrication of Printed Circuit Boards Antennas for Radio Frequency Identification Tags Inkjet Printing for MEMS
Micromachined Ultrasound-Based Proximity Sensors presents a packaged ultrasound microsystem for object detection and distance metering based on micromachined silicon transducer elements. It describes the characterization, optimization and the long-term stability of silicon membrane resonators as well as appropriate packaging for ultrasound microsystems. Micromachined Ultrasound-Based Proximity Sensors describes a cost-effective approach to the realization of a micro electro mechanical system (MEMS). The micromachined silicon transducer elements were fabricated using industrial IC technology combined with standard silicon micromachining techniques. Additionally, this approach allows the cointegration of the driving and read-out circuitry. To ensure the industrial applicability of the fabricated transducer elements intensive long-term stability and reliability tests were performed under various environmental conditions such as high temperature and humidity. Great effort was undertaken to investigate the packaging and housing of the ultrasound system, which mainly determine the success or failure of an industrial microsystem. A low-stress mounting of the transducer element minimizes thermomechanical stress influences. The developed housing not only protects the silicon chip but also improves the acoustic performance of the transducer elements. The developed ultrasound proximity sensor system can determine object distances up to 10 cm with an accuracy of better than 0.8 mm. Micromachined Ultrasound-Based Proximity Sensors will be of interest to MEMS researchers as well as those involved in solid-state sensor development.
Combining robotics with nanotechnology, this ready reference summarizes the fundamentals and emerging applications in this fascinating research field. This is the first book to introduce tools specifically designed and made for manipulating micro- and nanometer-sized objects, and presents such examples as semiconductor packaging and clinical diagnostics as well as surgery. The first part discusses various topics of on-chip and device-based micro- and nanomanipulation, including the use of acoustic, magnetic, optical or dielectrophoretic fields, while surface-driven and high-speed microfluidic manipulation for biophysical applications are also covered. In the second part of the book, the main focus is on microrobotic tools. Alongside magnetic micromanipulators, bacteria and untethered, chapters also discuss silicon nano- and integrated optical tweezers. The book closes with a number of chapters on nanomanipulation using AFM and nanocoils under optical and electron microscopes. Exciting images from the tiniest robotic systems at the nano-level are used to illustrate the examples throughout the work. A must-have book for readers with a background ranging from engineering to nanotechnology.
System-level modeling of MEMS - microelectromechanical systems - comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies. The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs. This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor industry, physicists, and physical chemists.
This edition of 'CMOS-MEMS' was originally published in the successful series 'Advanced Micro & Nanosystems'. A close look at enabling technologies is taken, the first section on MEMS featuring an introduction to the challenges and benefi ts of three-dimensional silicon processing. An insider's view of industrial MEMS commercialization is followed by chapters on capacitive interfaces for MEMS, packaging issues of micro- and nanosystems, MEMS contributions to high frequency integrated resonators and filters, and the uses of MEMS in mass data storage and electrochemical imaging by means of scanning micro- and nanoprobes. The second section on nanodevices first tackles the emerging topic of nanofluidics with a contribution each on simulation tools and on devices and uses, followed by another two on nanosensors featuring CNT sensors and CMOS-based DNA sensor arrays, respectively.
Micromachined Ultrasound-Based Proximity Sensors presents a packaged ultrasound microsystem for object detection and distance metering based on micromachined silicon transducer elements. It describes the characterization, optimization and the long-term stability of silicon membrane resonators as well as appropriate packaging for ultrasound microsystems. Micromachined Ultrasound-Based Proximity Sensors describes a cost-effective approach to the realization of a micro electro mechanical system (MEMS). The micromachined silicon transducer elements were fabricated using industrial IC technology combined with standard silicon micromachining techniques. Additionally, this approach allows the cointegration of the driving and read-out circuitry. To ensure the industrial applicability of the fabricated transducer elements intensive long-term stability and reliability tests were performed under various environmental conditions such as high temperature and humidity. Great effort was undertaken to investigate the packaging and housing of the ultrasound system, which mainly determine the success or failure of an industrial microsystem. A low-stress mounting of the transducer element minimizes thermomechanical stress influences. The developed housing not only protects the silicon chip but also improves the acoustic performance of the transducer elements. The developed ultrasound proximity sensor system can determine object distances up to 10 cm with an accuracy of better than 0.8 mm. Micromachined Ultrasound-Based Proximity Sensors will be of interest to MEMS researchers as well as those involved in solid-state sensor development.
Intended for wire-bonding and flip-chip packaging professionals and for scientists and engineers working in the field of mechanical microsensors, this practical monograph introduces novel measurement technologies that allow for in situ and real-time examination of physical processes during the packaging process or during subsequent reliability tests. The measurement system presented here makes possible measurements at formerly inaccessible packaging interconnects. For the first time it becomes possible to describe the wire-bonding process window in terms of the physical forces at the contact zone instead of the applied machine settings. This is significant for a deeper understanding and future development of these packaging processes. Applications of the sensor in the field of wire bonding and flip-chip characterization are also illustrated. The reader will gain much insight into the important field of interconnection technology in semiconductor packaging.
Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.
Based on the 'soft path' approach to the energy sector, a transition is now under way to a soft path for water. This approach starts by ensuring that ecosystem needs for water are satisfied and then undertakes a radical approach to reducing human uses of water by economic and social incentives, including open decision-making, water markets and equitable pricing, and the application of super-efficient technology, all applied in ways that avoid jeopardizing quality of life. The soft path for water is therefore a management strategy that frees up water by curbing water waste. Making the Most of the Water We Have is the first to present and apply the water soft path approach. It has three aims:
Includes a tool kit for planners and other practitioners. Published with POLIS Project and Friends of the Earth
Based on the 'soft path' approach to the energy sector, a transition is now under way to a soft path for water. This approach starts by ensuring that ecosystem needs for water are satisfied and then undertakes a radical approach to reducing human uses of water by economic and social incentives, including open decision-making, water markets and equitable pricing, and the application of super-efficient technology, all applied in ways that avoid jeopardizing quality of life. The soft path for water is therefore a management strategy that frees up water by curbing water waste. Making the Most of the Water We Have is the first to present and apply the water soft path approach. It has three aims: to bring to a wider audience the concept and the potential of water soft paths to demonstrate that soft path analysis is analytical and practical, and not just 'eco-dreaming' to indicate that soft paths are not only conceptually attractive but that they can be made economically and politically feasible. Includes a tool kit for planners and other practitioners. Published with POLIS Project and Friends of the Earth
Following on from the first AMN volume, this handy reference and textbook examines the topic of nanosystem design in further detail. It explains the physical and chemical basics behind the design and fabrication of nanodevices, covering all important, recent advances in the field, while introducing nanosystems to less experienced readers. The result is an important source for a fast, accurate overview of the state of the art of nanosystem realization, summarizing further important literature.
|
You may like...
|