0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (5)
  • -
Status
Brand

Showing 1 - 5 of 5 matches in All Departments

Algebraic Structures and Operator Calculus - Volume II: Special Functions and Computer Science (Hardcover, 1994 ed.): P.... Algebraic Structures and Operator Calculus - Volume II: Special Functions and Computer Science (Hardcover, 1994 ed.)
P. Feinsilver, Rene Schott
R1,559 Discovery Miles 15 590 Ships in 10 - 15 working days

In this volume we will present some applications of special functions in computer science. This largely consists of adaptations of articles that have appeared in the literature . Here they are presented in a format made accessible for the non-expert by providing some context. The material on group representations and Young tableaux is introductory in nature. However, the algebraic approach of Chapter 2 is original to the authors and has not appeared previously . Similarly, the material and approach based on Appell states, so formulated, is presented here for the first time . As in all volumes of this series, this one is suitable for self-study by researchers . It is as well appropriate as a text for a course or advanced seminar . The solutions are tackled with the help of various analytical techniques, such as g- erating functions, and probabilistic methods/insights appear regularly . An interesting feature is that, as has been the case in classical applications to physics, special functions arise- here in complexity analysis. And, as in physics, their appearance indicates an underlying Lie structure. Our primary audience is applied mathematicians and theoretical computer scientists . We are quite sure that pure mathematicians will find this volume interesting and useful as well .

Algebraic Structures and Operator Calculus - Volume I: Representations and Probability Theory (Hardcover, 1993 ed.): P.... Algebraic Structures and Operator Calculus - Volume I: Representations and Probability Theory (Hardcover, 1993 ed.)
P. Feinsilver, Rene Schott
R1,604 Discovery Miles 16 040 Ships in 10 - 15 working days

This series presents some tools of applied mathematics in the areas of proba bility theory, operator calculus, representation theory, and special functions used currently, and we expect more and more in the future, for solving problems in math ematics, physics, and, now, computer science. Much of the material is scattered throughout available literature, however, we have nowhere found in accessible form all of this material collected. The presentation of the material is original with the authors. The presentation of probability theory in connection with group represen tations is new, this appears in Volume I. Then the applications to computer science in Volume II are original as well. The approach found in Volume III, which deals in large part with infinite-dimensional representations of Lie algebras/Lie groups, is new as well, being inspired by the desire to find a recursive method for calcu lating group representations. One idea behind this is the possibility of symbolic computation of the matrix elements. In this volume, Representations and Probability Theory, we present an intro duction to Lie algebras and Lie groups emphasizing the connections with operator calculus, which we interpret through representations, principally, the action of the Lie algebras on spaces of polynomials. The main features are the connection with probability theory via moment systems and the connection with the classical ele mentary distributions via representation theory. The various systems of polynomi als that arise are one of the most interesting aspects of this study."

Algebraic Structures and Operator Calculus - Volume II: Special Functions and Computer Science (Paperback, Softcover reprint of... Algebraic Structures and Operator Calculus - Volume II: Special Functions and Computer Science (Paperback, Softcover reprint of the original 1st ed. 1994)
P. Feinsilver, Rene Schott
R1,431 Discovery Miles 14 310 Ships in 10 - 15 working days

In this volume we will present some applications of special functions in computer science. This largely consists of adaptations of articles that have appeared in the literature . Here they are presented in a format made accessible for the non-expert by providing some context. The material on group representations and Young tableaux is introductory in nature. However, the algebraic approach of Chapter 2 is original to the authors and has not appeared previously . Similarly, the material and approach based on Appell states, so formulated, is presented here for the first time . As in all volumes of this series, this one is suitable for self-study by researchers . It is as well appropriate as a text for a course or advanced seminar . The solutions are tackled with the help of various analytical techniques, such as g- erating functions, and probabilistic methods/insights appear regularly . An interesting feature is that, as has been the case in classical applications to physics, special functions arise- here in complexity analysis. And, as in physics, their appearance indicates an underlying Lie structure. Our primary audience is applied mathematicians and theoretical computer scientists . We are quite sure that pure mathematicians will find this volume interesting and useful as well .

Algebraic Structures and Operator Calculus - Volume I: Representations and Probability Theory (Paperback, Softcover reprint of... Algebraic Structures and Operator Calculus - Volume I: Representations and Probability Theory (Paperback, Softcover reprint of the original 1st ed. 1993)
P. Feinsilver, Rene Schott
R1,457 Discovery Miles 14 570 Ships in 10 - 15 working days

This series presents some tools of applied mathematics in the areas of proba bility theory, operator calculus, representation theory, and special functions used currently, and we expect more and more in the future, for solving problems in math ematics, physics, and, now, computer science. Much of the material is scattered throughout available literature, however, we have nowhere found in accessible form all of this material collected. The presentation of the material is original with the authors. The presentation of probability theory in connection with group represen tations is new, this appears in Volume I. Then the applications to computer science in Volume II are original as well. The approach found in Volume III, which deals in large part with infinite-dimensional representations of Lie algebras/Lie groups, is new as well, being inspired by the desire to find a recursive method for calcu lating group representations. One idea behind this is the possibility of symbolic computation of the matrix elements. In this volume, Representations and Probability Theory, we present an intro duction to Lie algebras and Lie groups emphasizing the connections with operator calculus, which we interpret through representations, principally, the action of the Lie algebras on spaces of polynomials. The main features are the connection with probability theory via moment systems and the connection with the classical ele mentary distributions via representation theory. The various systems of polynomi als that arise are one of the most interesting aspects of this study.

Algebraic Structures and Operators Calculus - Volume III: Representations of Lie Groups (Paperback, Softcover reprint of the... Algebraic Structures and Operators Calculus - Volume III: Representations of Lie Groups (Paperback, Softcover reprint of the original 1st ed. 1996)
P. Feinsilver, Rene Schott
R1,458 Discovery Miles 14 580 Ships in 10 - 15 working days

Introduction I. General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 III. Lie algebras: some basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 1 Operator calculus and Appell systems I. Boson calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II. Holomorphic canonical calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 III. Canonical Appell systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Chapter 2 Representations of Lie groups I. Coordinates on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 II. Dual representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 III. Matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 IV. Induced representations and homogeneous spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 General Appell systems Chapter 3 I. Convolution and stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 II. Stochastic processes on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 III. Appell systems on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Chapter 4 Canonical systems in several variables I. Homogeneous spaces and Cartan decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 II. Induced representation and coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 III. Orthogonal polynomials in several variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Chapter 5 Algebras with discrete spectrum I. Calculus on groups: review of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 II. Finite-difference algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 III. q-HW algebra and basic hypergeometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 IV. su2 and Krawtchouk polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 V. e2 and Lommel polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Chapter 6 Nilpotent and solvable algebras I. Heisenberg algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 II. Type-H Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Vll III. Upper-triangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 IV. Affine and Euclidean algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Chapter 7 Hermitian symmetric spaces I. Basic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 II. Space of rectangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 III. Space of skew-symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 IV. Space of symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Chapter 8 Properties of matrix elements I. Addition formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 II. Recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 III. Quotient representations and summation formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Chapter 9 Symbolic computations I. Computing the pi-matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 II. Adjoint group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 III. Recursive computation of matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Eat, Drink & Blame The Ancestors - The…
Ndumiso Ngcobo Paperback R366 Discovery Miles 3 660
Battles and Leaders of the Civil War…
Robert Underwood Johnson Paperback R485 Discovery Miles 4 850
The Christian Day, and Other Poems
Edward Horton Paperback R429 Discovery Miles 4 290
New Daughters Of Africa - An…
Margaret Busby Paperback R360 Discovery Miles 3 600
The Works of Philip Lindsley…
Philip Lindsley Paperback R811 Discovery Miles 8 110
RLE: Japan Mini-Set E: Sociology…
Various Hardcover R27,772 Discovery Miles 277 720
Responses to Love's Work (1995) by…
Richard Porter Paperback R365 Discovery Miles 3 650
The Newcomes. Memoirs of a Most…
William Makepeace Thackeray Paperback R816 Discovery Miles 8 160
What We Build Up
Multiple Paperback R254 Discovery Miles 2 540
Captain America
Jack Kirby, Joe Simon, … Paperback R610 R476 Discovery Miles 4 760

 

Partners