![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Self-Controlled Case Series Studies: A Modelling Guide with R provides the first comprehensive account of the self-controlled case series (SCCS) method, a statistical technique for investigating associations between outcome events and time-varying exposures. The method only requires information from individuals who have experienced the event of interest, and automatically controls for multiplicative time-invariant confounders, even when these are unmeasured or unknown. It is increasingly being used in epidemiology, most frequently to study the safety of vaccines and pharmaceutical drugs. Key features of the book include: A thorough yet accessible description of the SCCS method, with mathematical details provided in separate starred sections. Comprehensive discussion of assumptions and how they may be verified. A detailed account of different SCCS models, extensions of the SCCS method, and the design of SCCS studies. Extensive practical illustrations and worked examples from epidemiology. Full computer code from the associated R package SCCS, which includes all the data sets used in the book. The book is aimed at a broad range of readers, including epidemiologists and medical statisticians who wish to use the SCCS method, and also researchers with an interest in statistical methodology. The three authors have been closely involved with the inception, development, popularisation and programming of the SCCS method.
Vaccination programmes are of vital importance to public health and are present in virtually every country in the world. By promoting an understanding of the diverse effects of vaccination programmes, this textbook discusses how epidemiologic methods can be used to study, in real life, their impacts, benefits and risks. Written by expert practitioners in an accessible and concise style, this book is interspersed with practical examples which allow readers to acquire understanding through real-life data and problems. Part I provides an overview of basic concepts in vaccinology, immunology, vaccination programmes, infectious disease transmission dynamics, the various impacts of vaccination programmes and their societal context. Part II covers the main field tools used for the epidemiological evaluation of vaccination programmes: monitoring coverage and attitudes towards vaccination, surveillance of vaccine-preventable diseases and pathogens, seroepidemiological studies, methods to assess impact and outbreak investigation. Part III is dedicated to vaccine effectiveness and its assessment. Part IV includes an overview of the potential risks of vaccination and how to study these. Lastly, Part V deals with methods for an integrated assessment of benefits and risks of vaccination programmes. Suitable for professionals working in public health, epidemiology, biology and those working in health economics and vaccine development, Vaccination Programmes also serves as a textbook for postgraduate students in public health, epidemiology and infectious diseases. The book is aimed at all those involved in the many aspects of vaccination programmes, including public health professionals and epidemiologists. Its primary target audiences are master and doctoral students in infectious disease epidemiology and public health, post-doctoral participants of field epidemiology training programmes and public health professionals working in the post-implementation epidemiological evaluation of vaccines and vaccination programmes.
Vaccination programmes are of vital importance to public health and are present in virtually every country in the world. By promoting an understanding of the diverse effects of vaccination programmes, this textbook discusses how epidemiologic methods can be used to study, in real life, their impacts, benefits and risks. Written by expert practitioners in an accessible and concise style, this book is interspersed with practical examples which allow readers to acquire understanding through real-life data and problems. Part I provides an overview of basic concepts in vaccinology, immunology, vaccination programmes, infectious disease transmission dynamics, the various impacts of vaccination programmes and their societal context. Part II covers the main field tools used for the epidemiological evaluation of vaccination programmes: monitoring coverage and attitudes towards vaccination, surveillance of vaccine-preventable diseases and pathogens, seroepidemiological studies, methods to assess impact and outbreak investigation. Part III is dedicated to vaccine effectiveness and its assessment. Part IV includes an overview of the potential risks of vaccination and how to study these. Lastly, Part V deals with methods for an integrated assessment of benefits and risks of vaccination programmes. Suitable for professionals working in public health, epidemiology, biology and those working in health economics and vaccine development, Vaccination Programmes also serves as a textbook for postgraduate students in public health, epidemiology and infectious diseases. The book is aimed at all those involved in the many aspects of vaccination programmes, including public health professionals and epidemiologists. Its primary target audiences are master and doctoral students in infectious disease epidemiology and public health, post-doctoral participants of field epidemiology training programmes and public health professionals working in the post-implementation epidemiological evaluation of vaccines and vaccination programmes.
This volume contains the refereed proceedings of the first Workshop on Geomedical Systems, GEOMED '97, held in Rostock, Germany, in September 1997.
Self-Controlled Case Series Studies: A Modelling Guide with R provides the first comprehensive account of the self-controlled case series (SCCS) method, a statistical technique for investigating associations between outcome events and time-varying exposures. The method only requires information from individuals who have experienced the event of interest, and automatically controls for multiplicative time-invariant confounders, even when these are unmeasured or unknown. It is increasingly being used in epidemiology, most frequently to study the safety of vaccines and pharmaceutical drugs. Key features of the book include: A thorough yet accessible description of the SCCS method, with mathematical details provided in separate starred sections. Comprehensive discussion of assumptions and how they may be verified. A detailed account of different SCCS models, extensions of the SCCS method, and the design of SCCS studies. Extensive practical illustrations and worked examples from epidemiology. Full computer code from the associated R package SCCS, which includes all the data sets used in the book. The book is aimed at a broad range of readers, including epidemiologists and medical statisticians who wish to use the SCCS method, and also researchers with an interest in statistical methodology. The three authors have been closely involved with the inception, development, popularisation and programming of the SCCS method.
|
![]() ![]() You may like...
Sustainable Automotive Technologies 2013…
Joerg Wellnitz, Aleksandar Subic, …
Hardcover
R6,663
Discovery Miles 66 630
A Practical Guide for Scholarly Reading…
Fumiko Nazikian, Keiko Ono, …
Hardcover
R4,041
Discovery Miles 40 410
Scientific Realism in Studies of Reading
Alan D. Flurkey, Eric J. Paulson, …
Paperback
|