Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
Motivated by applications, an underlying theme in analysis is that of finding bases and understanding the transforms that implement them. These may be based on Fourier techniques or involve wavelet tools; they may be orthogonal or have redundancies (e.g., frames from signal analysis). Representations, Wavelets, and Frames contains chapters pertaining to this theme from experts and expositors of renown in mathematical analysis and representation theory. Topics are selected with an emphasis on fundamental and timeless techniques with a geometric and spectral-theoretic flavor. The material is self-contained and presented in a pedagogical style that is accessible to students from both pure and applied mathematics while also of interest to engineers. The book is organized into five sections that move from the theoretical underpinnings of the subject, through geometric connections to tilings, lattices and fractals, and concludes with analyses of computational schemes used in communications engineering. Within each section, individual chapters present new research, provide relevant background material, and point to new trends and open questions. Contributors: C. Benson, M. Bownik, V. Furst, V. W. Guillemin, B. Han, C. Heil, J.A. Hogan, P.E.T. Jorgensen, K. Kornelson, J.D. Lakey, D.R. Larson, K.D. Merrill, J.A. Packer, G. Ratcliff, K. Shuman, M.-S. Song, D.W. Stroock, K.F. Taylor, E. Weber, X. Zhang.
The theory of operators stands at the intersection of the frontiers of modern analysis and its classical counterparts; of algebra and quantum mechanics; of spectral theory and partial differential equations; of the modern global approach to topology and geometry; of representation theory and harmonic analysis; and of dynamical systems and mathematical physics. The present collection of papers represents contributions to a conference, and they have been carefully selected with a view to bridging different but related areas of mathematics which have only recently displayed an unexpected network of interconnections, as well as new and exciting cross-fertilizations. Our unify ing theme is the algebraic view and approach to the study of operators and their applications. The complementarity between the diversity of topics on the one hand and the unity of ideas on the other has been stressed. Some of the longer contributions represent material from lectures (in expanded form and with proofs for the most part). However, the shorter papers, as well as the longer ones, are an integral part of the picture; they have all been carefully refereed and revised with a view to a unity of purpose, timeliness, readability, and broad appeal. Raul Curto and Paile E. T."
This text, combining analysis and tools from mathematical probability, focuses on a systematic and novel exposition of a recent trend in pure and applied mathematics. The emphasis is on the unity of basis constructions and their expansions (bases which are computationally efficient), and on their use in several areas: from wavelets to fractals. The aim of this book is to show how to use processes from probability, random walks on branches, and their path-space measures in the study of convergence questions from harmonic analysis, with particular emphasis on the infinite products that arise in the analysis of wavelets. The book brings together tools from engineering (especially signal/image processing) and mathematics (harmonic analysis and operator theory). audience of students and workers in a variety of fields, meeting at the crossroads where they merge; hands-on approach with generous motivation; new pedagogical features to enhance teaching techniques and experience; includes more than 34 figures with detailed captions, illustrating the main ideas and visualizing the deeper connections in the subject; separate sections explain engineering terms to mathematicians and operator theory to engineers; and, interdisciplinary presentation and approach, combining central ideas from mathematical analysis (with a twist in the direction of operator theory and harmonic analysis), probability, computation, physics, and engineering. The presentation includes numerous exercises that are essential to reinforce fundamental concepts by helping both students and applied users practice sketching functions or iterative schemes, as well as to hone computational skills. Graduate students, researchers, applied mathematicians, engineers and physicists alike will benefit from this unique work in book form that fills a gap in the literature.
Combines analysis and tools from probability, harmonic analysis, operator theory, and engineering (signal/image processing) Interdisciplinary focus with hands-on approach, generous motivation and new pedagogical techniques Numerous exercises reinforce fundamental concepts and hone computational skills Separate sections explain engineering terms to mathematicians and operator theory to engineers Fills a gap in the literature
The subject of this book stands at the crossroads of ergodic theory and measurable dynamics. With an emphasis on irreversible systems, the text presents a framework of multi-resolutions tailored for the study of endomorphisms, beginning with a systematic look at the latter. This entails a whole new set of tools, often quite different from those used for the "easier" and well-documented case of automorphisms. Among them is the construction of a family of positive operators (transfer operators), arising naturally as a dual picture to that of endomorphisms. The setting (close to one initiated by S. Karlin in the context of stochastic processes) is motivated by a number of recent applications, including wavelets, multi-resolution analyses, dissipative dynamical systems, and quantum theory. The automorphism-endomorphism relationship has parallels in operator theory, where the distinction is between unitary operators in Hilbert space and more general classes of operators such as contractions. There is also a non-commutative version: While the study of automorphisms of von Neumann algebras dates back to von Neumann, the systematic study of their endomorphisms is more recent; together with the results in the main text, the book includes a review of recent related research papers, some by the co-authors and their collaborators.
The theory of operators stands at the intersection of the frontiers of modern analysis and its classical counterparts; of algebra and quantum mechanics; of spectral theory and partial differential equations; of the modern global approach to topology and geometry; of representation theory and harmonic analysis; and of dynamical systems and mathematical physics. The present collection of papers represents contributions to a conference, and they have been carefully selected with a view to bridging different but related areas of mathematics which have only recently displayed an unexpected network of interconnections, as well as new and exciting cross-fertilizations. Our unify ing theme is the algebraic view and approach to the study of operators and their applications. The complementarity between the diversity of topics on the one hand and the unity of ideas on the other has been stressed. Some of the longer contributions represent material from lectures (in expanded form and with proofs for the most part). However, the shorter papers, as well as the longer ones, are an integral part of the picture; they have all been carefully refereed and revised with a view to a unity of purpose, timeliness, readability, and broad appeal. Raul Curto and Paile E. T."
Algebras of operators arise frequently in the study of
representations of Lie groups, both finite-dimensional and
infinite-dimensional. This book begins with extensive background
material that covers definitions and terminology, operators in
Hilbert space, and the imprimitivity theorem.
|
You may like...
Sherlock: Series 1 and 2
Benedict Cumberbatch, Martin Freeman, …
Blu-ray disc
R134
Discovery Miles 1 340
|