Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
Sooner or later anyone who does statistical analysis runs into problems with missing data in which information for some variables is missing for some cases. Why is this a problem? Because most statistical methods presume that every case has information on all the variables to be included in the analysis. Using numerous examples and practical tips, this book offers a nontechnical explanation of the standard methods for missing data (such as listwise or casewise deletion) as well as two newer (and, better) methods, maximum likelihood and multiple imputation. Anyone who has been relying on ad-hoc methods that are statistically inefficient or biased will find this book a welcome and accessible solution to their problems with handling missing data.
This extremely well-written, straightforward book gives you the flexibility to cover regression more thoroughly than do most statistics texts, without financially taxing your students, and is written at a level that undergraduate students can easily comprehend.
Social scientists are interested in events and their causes. Although event histories are ideal for studying the causes of events, they typically possess two features-censoring and time-varying explanatory variables-that create major problems for standard statistical procedures. Several innovative approaches have been developed to accommodate these two peculiarities of event history data. This volume surveys these methods, concentrating on the approaches that are most useful to the social sciences. In particular, Paul D. Allison focuses on regression methods in which the occurrence of events is dependent on one or more explanatory variables. He gives attention to the statistical models that form the basis of event history analysis, and also to practical concerns such as data management, cost, and useful computer software. The Second Edition is part of SAGE's Quantitative Applications in the Social Sciences (QASS) series, which continues to serve countless students, instructors, and researchers in learning the most cutting-edge quantitative techniques.
Easy to read and comprehensive, Survival Analysis Using SAS: A Practical Guide, Second Edition, by Paul D. Allison, is an accessible, data-based introduction to methods of survival analysis. Researchers who want to analyze survival data with SAS will find just what they need with this fully updated new edition that incorporates the many enhancements in SAS procedures for survival analysis in SAS 9. Although the book assumes only a minimal knowledge of SAS, more experienced users will learn new techniques of data input and manipulation. Numerous examples of SAS code and output make this an eminently practical book, ensuring that even the uninitiated become sophisticated users of survival analysis. The main topics presented include censoring, survival curves, Kaplan-Meier estimation, accelerated failure time models, Cox regression models, and discrete-time analysis. Also included are topics not usually covered in survival analysis books, such as time-dependent covariates, competing risks, and repeated events. Survival Analysis Using SAS: A Practical Guide, Second Edition, has been thoroughly updated for SAS 9, and all figures are presented using ODS Graphics. This new edition also documents major enhancements to the STRATA statement in the LIFETEST procedure; includes a section on the PROBPLOT command, which offers graphical methods to evaluate the fit of each parametric regression model; introduces the new BAYES statement for both parametric and Cox models, which allows the user to do a Bayesian analysis using MCMC methods; demonstrates the use of the counting process syntax as an alternative method for handling time-dependent covariates; contains a section on cumulative incidence functions; and describes the use of the new GLIMMIX procedure to estimate random-effects models for discrete-time data.
This book demonstrates how to estimate and interpret fixed-effects models in a variety of different modeling contexts: linear models, logistic models, Poisson models, Cox regression models, and structural equation models. Both advantages and disadvantages of fixed-effects models will be considered, along with detailed comparisons with random-effects models. Written at a level appropriate for anyone who has taken a year of statistics, the bookis appropriate as a supplement for graduate courses in regression or linear regression as well as an aid to researchers who have repeated measures or cross-sectional data. Learn more about The Little Green Book - QASS Series Click Here"
|
You may like...
Maze Runner: Chapter II - The Scorch…
Thomas Brodie-Sangster, Nathalie Emmanuel, …
Blu-ray disc
R32
Discovery Miles 320
|