Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Biology, medicine and biochemistry have become data-centric fields for which Deep Learning methods are delivering groundbreaking results. Addressing high impact challenges, Deep Learning in Biology and Medicine provides an accessible and organic collection of Deep Learning essays on bioinformatics and medicine. It caters for a wide readership, ranging from machine learning practitioners and data scientists seeking methodological knowledge to address biomedical applications, to life science specialists in search of a gentle reference for advanced data analytics.With contributions from internationally renowned experts, the book covers foundational methodologies in a wide spectrum of life sciences applications, including electronic health record processing, diagnostic imaging, text processing, as well as omics-data processing. This survey of consolidated problems is complemented by a selection of advanced applications, including cheminformatics and biomedical interaction network analysis. A modern and mindful approach to the use of data-driven methodologies in the life sciences also requires careful consideration of the associated societal, ethical, legal and transparency challenges, which are covered in the concluding chapters of this book.
Provides an introduction to the fundamental concepts of fuzziness together with a compilation of recent advances in the application to medicine. The tutorials in the first part of the book range from basic concepts through theoretical frameworks to rule simplification through data clustering methodologies and the design of multivariate rule bases through self-learning by mapping fuzzy systems onto neural network structures. The case studies which follow are representative of the wide range of applications currently pursued in relation to medicine. The majority of applications presented in this book are about bridging the gap between low-level sensor measurements and intermediate or high-level data representations. The book offers a comprehensive perspective from leading authorities world-wide and provides a tantalising glimpse into the role of sophisticated knowledge engineering methods in shaping the landscape of medical technology in the future.
This book constitutes the thoroughly refereed post-proceedings of the 7th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2010, held in Palermo, Italy, in September 2010. The 19 papers, presented together with 2 keynote speeches and 1 tutorial, were carefully reviewed and selected from 24 submissions. The papers are organized in topical sections on sequence analysis, promoter analysis and identification of transcription factor binding sites; methods for the unsupervised analysis, validation and visualization of structures discovered in bio-molecular data -- prediction of secondary and tertiary protein structures; gene expression data analysis; bio-medical text mining and imaging -- methods for diagnosis and prognosis; mathematical modelling and simulation of biological systems; and intelligent clinical decision support systems (i-CDSS).
|
You may like...
|