Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Mechanisms of neural plasticity enable the encoding and memorization of information based on sensory inputs and can be harnessed to partially restore function after CNS assault such as stroke or head trauma. In the present book, experts from the field of visual system plasticity describe and evaluate the evidence for neural mechanisms proposed to underlie CNS plasticity in the major divisions of the brain dedicated to visual processing, the retina, sub-cortical structures and cortex. We present studies from a wide variety of disciplines that range from molecular biology to neurophysiology and computer modeling. Leading investigators discuss their own work, and integrate this research with colleagues from other specializations. The book points out future applications for this research including clinical uses and engineering within the biomedical sciences. This book is an exciting and thought provoking read for all levels of science enthusiast interested in the physical basis of learning and cognition.
Mechanisms of neural plasticity enable the encoding and memorization of information based on sensory inputs and can be harnessed to partially restore function after CNS assault such as stroke or head trauma. In the present book, experts from the field of visual system plasticity describe and evaluate the evidence for neural mechanisms proposed to underlie CNS plasticity in the major divisions of the brain dedicated to visual processing, the retina, sub-cortical structures and cortex. We present studies from a wide variety of disciplines that range from molecular biology to neurophysiology and computer modeling. Leading investigators discuss their own work, and integrate this research with colleagues from other specializations. The book points out future applications for this research including clinical uses and engineering within the biomedical sciences. This book is an exciting and thought provoking read for all levels of science enthusiast interested in the physical basis of learning and cognition.
The best example of filling-in involves the blind spot, a region of the retina devoid of photoreceptors. Remarkably, the region of visual space corresponding to the blind spot is not perceived as a dark region in space, but instead as having the same colour and texture as the surrounding background; hence the expression "filling in." While this type of perceptual completion phenomenon is common in the visual domain, it is argued by the leading scientists who contribute to this book that forms of filling-in also take place in other sensory modalities, including the auditory, somatosensory, and motor systems. In a concluding chapter an integrative approach is taken, which attempts to provide a common framework for completion phenomena occurring on a fast time scale, and cortical reorganization in sensory and motor cortex induced by peripheral damage or skill learning taking place on a slower time scale. It is proposed that systematic changes in the interplay between inhibitory and excitatory inputs permit cortical neurons to become driven by new sources of input, which, in addition to initial perceptual consequences can lead to a long-term structural reorganization of cortex. This book represents a truly interdisciplinary approach to neuroscience, with chapters covering computational modelling, visual psychophysics, functional brain imaging, single-cell physiology, and clinical patient cases. It will be of interest to researchers and graduate students in systems neuroscience, cognitive neuroscience, vision science, neuroimaging, perceptual psychology, computational neuroscience, and philosophy of mind.
|
You may like...
|