|
Showing 1 - 16 of
16 matches in All Departments
This text provides an introduction to the numerical solution of initial and boundary value problems in ordinary differential equations on a firm theoretical basis. The book strictly presents numerical analysis as part of the more general field of scientific computing. Important algorithmic concepts are explained down to questions of software implementation. For initial value problems a dynamical systems approach is used to develop Runge-Kutta, extrapolation, and multistep methods. For boundary value problems including optimal control problems both multiple shooting and collocation methods are worked out in detail. Graduate students and researchers in mathematics, computer science, and engineering will find this book useful. Chapter summaries, detailed illustrations, and exercises are contained throughout the book with many interesting applications taken from a rich variety of areas.Peter Deuflhard is founder and president of the Zuse Institute Berlin (ZIB) and full professor of scientific computing at the Free University of Berlin, department of mathematics and computer science.Folkmar Bornemann is full professor of scientific computing at the Center of Mathematical Sciences, Technical University of Munich.
This introductory book directs the reader to a selection of useful elementary numerical algorithms on a reasonably sound theoretical basis, built up within the text. The primary aim is to develop algorithmic thinking -- emphasizing long living computational concepts over fast changing software issues. The guiding principle is to explain modern numerical analysis concepts applicable in complex scientific computing at much simpler model problems. For example, the two adaptive techniques in numerical quadrature elaborated here carry the germs for either extrapolation methods or multigrid methods in differential equations, which are not treated here. The presentation draws on geometrical intuition wherever appropriate, supported by a large number of illustrations. Numerous exercises are included for further practice and improved understanding. This text will appeal to undergraduate and graduate students as well as researchers in mathematics, computer science, science, and engineering. At the same time it is addressed to practical computational scientists who, via self-study, wish to become acquainted with modern concepts of numerical analysis and scientific computing on an elementary level. Sole prerequisite is undergraduate knowledge in Linear Algebra and Calculus.
This book is intended for students of computational systems biology
with only a limited background in mathematics. Typical books on
systems biology merely mention algorithmic approaches, but without
offering a deeper understanding. On the other hand, mathematical
books are typically unreadable for computational biologists. The
authors of the present book have worked hard to fill this gap. The
result is not a book on systems biology, but on computational
methods in systems biology. This book originated from courses
taught by the authors at Freie Universitat Berlin. The guiding idea
of the courses was to convey those mathematical insights that are
indispensable for systems biology, teaching the necessary
mathematical prerequisites by means of many illustrative examples
and without any theorems. The three chapters cover the mathematical
modelling of biochemical and physiological processes, numerical
simulation of the dynamics of biological networks and
identification of model parameters by means of comparisons with
real data. Throughout the text, the strengths and weaknesses of
numerical algorithms with respect to various systems biological
issues are discussed. Web addresses for downloading the
corresponding software are also included.
This book deals with the efficient numerical solution of
challenging nonlinear problems in science and engineering, both in
finite and in infinite dimension. Its focus is on local and global
Newton methods for direct problems or Gauss-Newton methods for
inverse problems. Lots of numerical illustrations, comparison
tables, and exercises make the text useful in computational
mathematics classes. At the same time, the book opens many
directions for possible future research.
This book is intended for students of computational systems biology
with only a limited background in mathematics. Typical books on
systems biology merely mention algorithmic approaches, but without
offering a deeper understanding. On the other hand, mathematical
books are typically unreadable for computational biologists. The
authors of the present book have worked hard to fill this gap. The
result is not a book on systems biology, but on computational
methods in systems biology. This book originated from courses
taught by the authors at Freie Universität Berlin. The guiding
idea of the courses was to convey those mathematical insights that
are indispensable for systems biology, teaching the necessary
mathematical prerequisites by means of many illustrative examples
and without any theorems. The three chapters cover the mathematical
modelling of biochemical and physiological processes, numerical
simulation of the dynamics of biological networks and
identification of model parameters by means of comparisons with
real data. Throughout the text, the strengths and weaknesses of
numerical algorithms with respect to various systems biological
issues are discussed. Web addresses for downloading the
corresponding software are also included.
This book deals with the general topic "Numerical solution of
partial differential equations (PDEs)" with a focus on adaptivity
of discretizations in space and time. By and large, introductory
textbooks like "Numerical Analysis in Modern Scientific Computing"
by Deuflhard and Hohmann should suffice as a prerequisite. The
emphasis lies on elliptic and parabolic systems. Hyperbolic
conservation laws are treated only on an elementary level excluding
turbulence. Numerical Analysis is clearly understood as part of
Scientific Computing. The focus is on the efficiency of algorithms,
i.e. speed, reliability, and robustness, which directly leads to
the concept of adaptivity in algorithms. The theoretical derivation
and analysis is kept as elementary as possible. Nevertheless
required somewhat more sophisticated mathematical theory is
summarized in comprehensive form in an appendix. Complex relations
are explained by numerous figures and illustrating examples.
Non-trivial problems from regenerative energy, nanotechnology,
surgery, and physiology are inserted. The text will appeal to
graduate students and researchers on the job in mathematics,
science, and technology. Conceptually, it has been written as a
textbook including exercises and a software list, but at the same
time it should be well-suited for self-study.
This book deals with the efficient numerical solution of
challenging nonlinear problems in science and engineering, both in
finite dimension (algebraic systems) and in infinite dimension
(ordinary and partial differential equations). Its focus is on
local and global Newton methods for direct problems or Gauss-Newton
methods for inverse problems. The term 'affine invariance' means
that the presented algorithms and their convergence analysis are
invariant under one out of four subclasses of affine
transformations of the problem to be solved. Compared to
traditional textbooks, the distinguishing affine invariance
approach leads to shorter theorems and proofs and permits the
construction of fully adaptive algorithms. Lots of numerical
illustrations, comparison tables, and exercises make the text
useful in computational mathematics classes. At the same time, the
book opens many directions for possible future research.
Well-known authors; Includes topics and results that have
previously not been covered in a book; Uses many interesting
examples from science and engineering; Contains numerous homework
exercises; Scientific computing is a hot and topical area
This book introduces the main topics of modern numerical
analysis: sequence of linear equations, error analysis, least
squares, nonlinear systems, symmetric eigenvalue problems,
three-term recursions, interpolation and approximation, large
systems and numerical integrations. The presentation draws on
geometrical intuition wherever appropriate and is supported by a
large number of illustrations, exercises, and examples.
|
Computational Molecular Dynamics: Challenges, Methods, Ideas - Proceeding of the 2nd International Symposium on Algorithms for Macromolecular Modelling, Berlin, May 21-24, 1997 (Paperback, Softcover reprint of the original 1st ed. 1999)
Peter Deuflhard, Jan Hermans, Benedict Leimkuhler, Alane Mark, Sebastian Reich, …
|
R2,993
Discovery Miles 29 930
|
Ships in 10 - 15 working days
|
On May 21-24, 1997 the Second International Symposium on Algorithms for Macromolecular Modelling was held at the Konrad Zuse Zentrum in Berlin. The event brought together computational scientists in fields like biochemistry, biophysics, physical chemistry, or statistical physics and numerical analysts as well as computer scientists working on the advancement of algorithms, for a total of over 120 participants from 19 countries. In the course of the symposium, the speakers agreed to produce a representative volume that combines survey articles and original papers (all refereed) to give an impression of the present state of the art of Molecular Dynamics.The 29 articles of the book reflect the main topics of the Berlin meeting which were i) Conformational Dynamics, ii) Thermodynamic Modelling, iii) Advanced Time-Stepping Algorithms, iv) Quantum-Classical Simulations and Fast Force Field and v) Fast Force Field Evaluation.
|
Atlas der Weltbilder (German, Hardcover)
Christoph Markschies, Ingeborg Reichle, Jochen Bruning, Peter Deuflhard; Contributions by Steffen Siegel, …
|
R5,649
R4,363
Discovery Miles 43 630
Save R1,286 (23%)
|
Ships in 10 - 15 working days
|
Praktiken visueller Welterzeugung in Form von Weltbildern lassen
sich bereits in der Antike beobachten und haben sich bis heute als
Mittel zur Konstruktion von Ordnungsvorstellungen bewahrt. Seit
jeher steht der begrifflichen Ordnung der Welt eine modellhaft
anschauliche Ordnung gegenuber. Die grundlegende Bedeutung, die
Anschaulichkeit fur unser Verstandnis von der Welt spielt und die
die vielfaltigsten Weltbilder hervorgebracht hat, ist jedoch mehr
als eine blosse Wiederholung des Sehens. Die Bildwelten der
Weltbilder geben uns nicht nur ein anschauliches Bild von der Welt
und vom Kosmos. Sie sind zugleich wirkungsmachtige Instrumente zum
praktischen und theoretischen Handeln in der Welt und formen auf
unterschiedlichste Weise unsere Vorstellungen von der Welt und
unsere Weltanschauung. Die grundlegenden Fragen, die dabei gestellt
werden, haben sich durch die Jahrhunderte nicht wirklich geandert.
Sie betreffen die den Menschen umfassende Ordnung und seine
Stellung innerhalb dieser Ordnung: Welche Gestalt hat die Welt?
Welche Krafte und Ideen wirken in ihr? Woraus besteht sie? Wie ist
sie entstanden? Wie sieht ihre Zukunft aus? Bereits die fruhen
Beispiele von Weltbildern machen deutlich, dass die sowohl in
Bildern als auch in Erzahlungen zur Erscheinung gebrachte
Wirklichkeit immer eine vom Menschen hervorgebrachte ist und daher
stets interpretierte Wirklichkeit und symbolische Konstruktion
bedeutet. Die gesammelten Beispiele reprasentieren zugleich
unterschiedliche visuelle Medien, die im Dienst der Konstruktion
der Welt als Bild stehen. Damit ist die Geschichte der Weltbilder
nicht nur eine Geschichte wechselnder Weltvorstellungen, sondern
zugleich auch eine Geschichte wechselnder Darstellungsmethoden und
unterschiedlicher Tragermedien. Der Atlas der Weltbilder behandelt
ein breites Spektrum von Artefakten und schreitet einen grossen
zeitlichen Bogen ab, der mit altorientalischen und altagyptischen
Weltkonzeptionen beginnt und mit aktuellen Simulationen der
Astrophysik endet. Der Atlas der Weltbilder dokumentiert somit
Aspekte der Kulturgeschichte visueller Welterzeugung in Form von
Weltbildern aus den zuruckliegenden zweieinhalb Jahrtausenden.
Paradigmatische Analysen der Prinzipien und Funktionen sowie der
Geschichte und Bedeutung von Weltbildern geben erstmals umfassenden
Aufschluss uber dieses umfangreiche Themengebiet."
This textbook deals with the numerical solution of initial and
boundary value problems for ordinary differential equations. It
takes the reader directly to the practically proven methods - from
their theoretical foundation via their analysis to questions of
implementation. The textbook contains a wealth of exercises
together with numerous application examples. Sections of this third
edition have been revised and it has been supplemented with MATLAB
codes.
Hat Europa die Zentralperspektive erfunden? Oder existieren nicht
auch Alternativen, den optischen Sprung aus zwei in drei
Dimensionen zu realisieren, aus dem Bild in den Raum? Diesen Fragen
widmet sich das vorliegende Buch aus den Blickwinkeln von
Kunstgeschichte, Bildwissenschaft, Mathematik, Informatik,
Psychologie, Museumspädagogik und Philosophie. Historisch gesehen
ist die mathematisch konstruierbare "Perspektive" ein Produkt der
frĂĽhen italienischen Renaissance. Seit ihrer Erfindung wurden
jedoch immer wieder Zweifel an ihrer ästhetischen Substanz laut,
die sich in den nächsten Jahrhunderten insbesondere im
ostasiatischen Raum ausbreiteten. Neben der europäischen
Bilderwelt werden deshalb auch zahlreiche Beispiele aus der
chinesischen, der japanischen und der melanesischen Kultur zum
Vergleich dargestellt. DarĂĽber hinaus unterlagen 'Bilder' auch
einem epochalen Wandel: Heute verstehen wir darunter nicht nur
analoge Medien, etwa Tafelmalereien oder Druckgraphiken, Diagramme,
Karten oder Modelle, sondern auch Resultate digitaler Verfahren in
Naturwissenschaft und Medizin.
|
|