Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Current books on low voltage analog design typically cover techniques for supply voltages down to approximately 1V. This book presents novel ideas and results for operation from much lower supply voltages and the techniques presented are basic circuit techniques that are widely applicable beyond the scope of the presented examples. Analog Circuit Design Techniques at 0.5V is written for analog circuit designers and researchers as well as graduate students studying semiconductors and integrated circuit design.
This book is a compilation of chapters on various aspects of Ultra Wideband. The book includes chapters on Ultra Wideband transceiver implementations, pulse-based systems and one on the implementation for the WiMedia/MBOFDM approach. Another chapter discusses the implementation of the physical layer baseband, including the ADC and post-ADC processing required in the UWB system. Future advances such as multiantenna UWB solutions are also discussed.
When comparing conventional computing architectures to the architectures of biological neural systems, we find several striking differences. Conventional computers use a low number of high performance computing elements that are programmed with algorithms to perform tasks in a time sequenced way; they are very successful in administrative applications, in scientific simulations, and in certain signal processing applications. However, the biological systems still significantly outperform conventional computers in perception tasks, sensory data processing and motory control. Biological systems use a completely dif ferent computing paradigm: a massive network of simple processors that are (adaptively) interconnected and operate in parallel. Exactly this massively parallel processing seems the key aspect to their success. On the other hand the development of VLSI technologies provide us with technological means to implement very complicated systems on a silicon die. Especially analog VLSI circuits in standard digital technologies open the way for the implement at ion of massively parallel analog signal processing systems for sensory signal processing applications and for perception tasks. In chapter 1 the motivations behind the emergence of the analog VLSI of massively parallel systems is discussed in detail together with the capabilities and imitations of VLSI technologies and the required research and developments. Analog parallel signal processing drives for the development of very com pact, high speed and low power circuits. An important technologicallimitation in the reduction of the size of circuits and the improvement of the speed and power consumption performance is the device inaccuracies or device mismatch."
When comparing conventional computing architectures to the architectures of biological neural systems, we find several striking differences. Conventional computers use a low number of high performance computing elements that are programmed with algorithms to perform tasks in a time sequenced way; they are very successful in administrative applications, in scientific simulations, and in certain signal processing applications. However, the biological systems still significantly outperform conventional computers in perception tasks, sensory data processing and motory control. Biological systems use a completely dif ferent computing paradigm: a massive network of simple processors that are (adaptively) interconnected and operate in parallel. Exactly this massively parallel processing seems the key aspect to their success. On the other hand the development of VLSI technologies provide us with technological means to implement very complicated systems on a silicon die. Especially analog VLSI circuits in standard digital technologies open the way for the implement at ion of massively parallel analog signal processing systems for sensory signal processing applications and for perception tasks. In chapter 1 the motivations behind the emergence of the analog VLSI of massively parallel systems is discussed in detail together with the capabilities and imitations of VLSI technologies and the required research and developments. Analog parallel signal processing drives for the development of very com pact, high speed and low power circuits. An important technologicallimitation in the reduction of the size of circuits and the improvement of the speed and power consumption performance is the device inaccuracies or device mismatch."
This book is a compilation of chapters on various aspects of Ultra Wideband. The book includes chapters on Ultra Wideband transceiver implementations, pulse-based systems and one on the implementation for the WiMedia/MBOFDM approach. Another chapter discusses the implementation of the physical layer baseband, including the ADC and post-ADC processing required in the UWB system. Future advances such as multiantenna UWB solutions are also discussed.
Analog design at ultra-low supply voltages is an important
challenge for the semiconductor research community and
industry. Analog Circuit Design Techniques at 0.5V covers challenges for the design of MOS analog and RF circuits at a 0.5 V power supply voltage. All design techniques presented are true low voltage techniques - all nodes in the circuits are within the power supply rails. The circuit implementations of body and gate input fully differential amplifiers are also discussed. These building blocks enable us to build continuous-time filters, track-and-hold circuits, and continuous-time sigma delta modulators. Current books on low voltage analog design typically cover techniques for supply voltages down to approximately 1V. This book presents novel ideas and results for operation from much lower supply voltages and the techniques presented are basic circuit techniques that are widely applicable beyond the scope of the presented examples. Analog Circuit Design Techniques at 0.5V is written for analog circuit designers and researchers as well as graduate students studying semiconductors and integrated circuit design.
|
You may like...
|