Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Intended for advanced undergraduates and beginning graduates with some basic knowledge of optics and quantum mechanics, this text begins with a review of the relevant results of quantum mechanics, before turning to the electromagnetic interactions involved in slowing and trapping atoms and ions, in both magnetic and optical traps. The concluding chapters discuss a broad range of applications, from atomic clocks and studies of collision processes, to diffraction and interference of atomic beams at optical lattices and Bose-Einstein condensation.
This in-depth textbook with a focus on atom-light interactions prepares students for research in a fast-growing and dynamic field. Intended to accompany the laser-induced revolution in atomic physics, it is a comprehensive text for the emerging era in atomic, molecular and optical science. Utilising an intuitive and physical approach, the text describes two-level atom transitions, including appendices on Ramsey spectroscopy, adiabatic rapid passage and entanglement. With a unique focus on optical interactions, the authors present multi-level atomic transitions with dipole selection rules, and M1/E2 and multiphoton transitions. Conventional structure topics are discussed in some detail, beginning with the hydrogen atom and these are interspersed with material rarely found in textbooks such as intuitive descriptions of quantum defects. The final chapters examine modern applications and include many references to current research literature. The numerous exercises and multiple appendices throughout enable advanced undergraduate and graduate students to balance theory with experiment.
Laser cooling allows one to slow atoms to roughly the speed of a mosquito and to control their motions with unprecedented precision. This elegant technique, whereby atoms, molecules, and even microscopic beads of glass, can be trapped in small regions of free space by beams of light and subsequently moved at will using other beams, has revolutionized many areas of physics. In particular, it provides a useful research tool for the study of individual atoms, for investigating the details of chemical reactions, and even for the study of atomic motion in the quantum domain. This text begins with a review of the relevant aspects of quantum mechanics; it then turns to the electromagnetic interactions involved in slowing and trapping atoms, in both magnetic and optical traps. The concluding chapters discuss a broad range of applications, including atomic clocks, studies of ultra-cold collision processes, diffraction and interference of atomic beams, optical lattices, and Bose-Einstein condensation. The book is intended for advanced undergraduates and beginning graduate students who have some basic knowledge of optics and quantum mechanics. An extensive bibliography provides access to the current research literature.
|
You may like...
|