![]() |
![]() |
Your cart is empty |
||
Showing 1 - 2 of 2 matches in All Departments
The closed orbits of three-dimensional flows form knots and links. This book develops the tools - template theory and symbolic dynamics - needed for studying knotted orbits. This theory is applied to the problems of understanding local and global bifurcations, as well as the embedding data of orbits in Morse-smale, Smale, and integrable Hamiltonian flows. The necesssary background theory is sketched; however, some familiarity with low-dimensional topology and differential equations is assumed.
"Celestial Encounters" is for anyone who has ever wondered about the foundations of chaos. In 1888, the 34-year-old Henri Poincare submitted a paper that was to change the course of science, but not before it underwent significant changes itself. "The Three-Body Problem and the Equations of Dynamics" won a prize sponsored by King Oscar II of Sweden and Norway and the journal "Acta Mathematica," but after accepting the prize, Poincare found a serious mistake in his work. While correcting it, he discovered the phenomenon of chaos. Starting with the story of Poincare's work, Florin Diacu and Philip Holmes trace the history of attempts to solve the problems of celestial mechanics first posed in Isaac Newton's "Principia" in 1686. In describing how mathematical rigor was brought to bear on one of our oldest fascinations--the motions of the heavens--they introduce the people whose ideas led to the flourishing field now called nonlinear dynamics. In presenting the modern theory of dynamical systems, the models underlying much of modern science are described pictorially, using the geometrical language invented by Poincare. More generally, the authors reflect on mathematical creativity and the roles that chance encounters, politics, and circumstance play in it."
|
![]() ![]() You may like...
|