Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Computational intelligence paradigms have attracted the growing interest of researchers, scientists, engineers and application engineers in a number of everyday applications. These applications are not limited to any particular field and include engineering, business, banking and consumer electronics. Computational intelligence paradigms include artificial intelligence, artificial neural networks, fuzzy systems and evolutionary computing. Artificial neural networks can mimic the biological information processing mechanism in a very limited sense. Evolutionary computing algorithms are used for optimisation applications, and fuzzy logic provides a basis for representing uncertain and imprecise knowledge. Practical Applications of Computational Intelligence Techniques contains twelve chapters providing actual application of these techniques in the real world. Such examples include, but are not limited to, intelligent household appliances, aerial spray models, industrial applications and medical diagnostics and practice. This book will be useful to researchers, practicing engineers/scientists and students, who are interested in developing practical applications in a computational intelligence environment.
Agent systems are being used to model complex systems like societies, markets and biological systems. In this book we investigate issues of agent systems related to convergence and interactivity using techniques from agent based modelling to simulate complex systems, and demonstrate that interactivity/exchange and convergence in multi-agent systems are issues that are significantly interrelated. Topic and features: - Introduces the state of the art in multi-agent systems, with an emphasis on agent-based computational economics. - Sheds light on the fundamental concepts behind the stability of multi-agent systems. - Investigates knowledge exchange among agents, the rationale behind it and its effects on the ecosystem. - Explores how information provided through interaction with the system can be used to optimise its performance. - Describes a pricing strategy for a realistic large-scale distributed system. This book supplies a comprehensive resource and will be invaluable reading for researchers and postgraduates studying this topic.
Computational intelligence paradigms have attracted the growing interest of researchers, scientists, engineers and application engineers in a number of everyday applications. These applications are not limited to any particular field and include engineering, business, banking and consumer electronics. Computational intelligence paradigms include artificial intelligence, artificial neural networks, fuzzy systems and evolutionary computing. Artificial neural networks can mimic the biological information processing mechanism in a very limited sense. Evolutionary computing algorithms are used for optimisation applications, and fuzzy logic provides a basis for representing uncertain and imprecise knowledge. Practical Applications of Computational Intelligence Techniques contains twelve chapters providing actual application of these techniques in the real world. Such examples include, but are not limited to, intelligent household appliances, aerial spray models, industrial applications and medical diagnostics and practice. This book will be useful to researchers, practicing engineers/scientists and students, who are interested in developing practical applications in a computational intelligence environment.
Agent systems are being used to model complex systems like societies, markets and biological systems. In this book we investigate issues of agent systems related to convergence and interactivity using techniques from agent based modelling to simulate complex systems, and demonstrate that interactivity/exchange and convergence in multi-agent systems are issues that are significantly interrelated. Topic and features: - Introduces the state of the art in multi-agent systems, with an emphasis on agent-based computational economics. - Sheds light on the fundamental concepts behind the stability of multi-agent systems. - Investigates knowledge exchange among agents, the rationale behind it and its effects on the ecosystem. - Explores how information provided through interaction with the system can be used to optimise its performance. - Describes a pricing strategy for a realistic large-scale distributed system. This book supplies a comprehensive resource and will be invaluable reading for researchers and postgraduates studying this topic.
Providing an in-depth treatment of neural network models, this volume explains and proves the main results in a clear and accessible way. It presents the essential principles of nonlinear dynamics as derived from neurobiology, and investigates the stability, convergence behaviour and capacity of networks. Also included are sections on stochastic networks and simulated annealing, presented using Markov processes rather than statistical physics, and a chapter on backpropagation. Each chapter ends with a suggested project designed to help the reader develop an integrated knowledge of the theory, placing it within a practical application domain. Neural Network Models: Theory and Projects concentrates on the essential parameters and results that will enable the reader to design hardware or software implementations of neural networks and to assess critically existing commercial products.
|
You may like...
|