![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 12 of 12 matches in All Departments
Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications introduces the principles, properties, and emerging applications of this important materials system. The hybridization of magnetic nanoparticles with metals, metal oxides and semiconducting nanoparticles may result in superior properties. The book reviews the most relevant hybrid materials, their mechanisms and properties. Then, the book focuses on the rational design, controlled synthesis, advanced characterizations and in-depth understanding of structure-property relationships. The last part addresses the promising applications of hybrid nanomaterials in the real world such as in the environment, energy, medicine fields. Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications comprehensively reviews both the theoretical and experimental approaches used to rapidly advance nanomaterials that could result in new technologies that impact day-to-day life and society in key areas such as health and the environment. It is suitable for researchers and practitioners who are materials scientists and engineers, chemists or physicists in academia and R&D.
The gradual increase of population and the consequential rise in the energy demands in recent years have led to the widespread use of fossil fuels. CO2 transformation by various processes is considered as a promising alternative technology. This book sets out the fundaments of how nanomaterials are being used for this purpose. Nanomaterials for CO2 Capture, Storage, Conversion and Utilization summarizes the research, development and innovations in the capture, storage, transformation and utilization of CO2 into useful products and raw chemicals for industry. This is achieved by using advanced processes such as CO2 reforming, bi-reforming and tri-reforming of hydrocarbons or biomass derivatives; homogeneous and heterogeneous hydrogenation; photochemical reduction; photoelectrochemical reduction; electrochemical reduction; biochemical reduction; supercritical CO2 technology; advanced catalyst synthesis for CO2 conversion; organic carbonates for polymers synthesis from CO2, and CO2 capture and sequestration. The systematic and updated reviews on the mentioned sectors, especially on the use of nanotechnology for the transformation of CO2 is scarce in the literature. Thus, the book addresses the recent knowledge gaps and potential solutions of the storage, utilization and transformation of CO2 as well as its promising applications. This is an important reference source for materials scientists, engineers and energy scientists who want to understand how nanotechnology is helping us to solve some of the world's major energy problems.
Nanotechnology has been incorporated into a wide range of garments to improve the durability of clothing / apparel and create new properties for a special end-used application. It also incorporates wearable electronics into clothing to make it smarter. Smart nano-textiles refers to the uses and integration of smart nanocoatings, nanosensors and nanodevices in multifunctional textiles, since they are both low cost and have low power consumption. Various organic and inorganic nanomaterials can be used in garments to improve their properties and create new properties such as anti-bacterial, superhydrophobic, auto-cleaning, self-cleaning, stain repellent, wrinkle-free, static eliminating, fire resistant and electrically conductive properties. This book focuses on the fundamental concepts and approaches for the preparation of smart nanotextiles, their properties, and their applications in multifarious industries, including smart garments, biomedicine, construction/building materials, energy conversion/storage, automotive/aerospace industries and agriculture.
The term 'nanobattery' can refer not only to the nanosized battery, but also to the uses of nanotechnology in a macro-sized battery for enhancing its performance and lifetime. Nanobatteries can offer many advantages over the traditional battery, including higher power density, shorter charging time, and longer shelf life. Nano-generators refer to the uses of nanosized devices and materials to convert mechanical, thermal and light-based energies into electricity. Similar to with traditional battery, in nanobatteries, the chemical energy is converted into electricity. This book addresses the fundamental design concepts and promising applications of nanobatteries and nanogenerators. Particular application areas include healthcare, biomedical, smart nanodevices and nanosensors, which may require new electric power sources, including self-powered ability and nanostructured electric power sources. In this regard, nanobatteries and nanogenerators represent the next generation of electric power. This is an important reference source for materials scientists, engineers and energy scientists, who are looking to increase their understanding of how nanotechnology is being used to create new energy storage and generation solutions.
The gradual increase of population and the consequential rise in the energy demands in the recent years have led to the overwhelming use of fossil fuels. Hydrogen has recently gained substantial interest because of its outstanding features to be used as clean energy carrier and energy vector. Moreover, hydrogen appears to be an effective alternative to tackle the issues of energy security and greenhouse gas emissions given that it is widely recognized as a clean fuel with high energy capacity. Hydrogen can be produced by various techniques such as thermochemical, hydrothermal, electrochemical, electrolytic, biological and photocatalytic methods as well as hybrid systems. New Dimensions in Production and Utilization of Hydrogen emphasizes on the research, development and innovations in the production and utilization of hydrogen in the industrial biorefining, hydrotreating and hydrogenation technologies, fuel cells, aerospace sector, pharmaceuticals, metallurgy, as well as bio-oil upgrading. Moreover, the supply chain analysis, lifecycle assessment, techno-economic analysis, as well as strengths and threats of global hydrogen market are covered in the book. This book provides many significant insights and scientific findings of key technologies for hydrogen production, storage and emerging applications. The book serves as a reference material for chemical and biochemical engineers, mechanical engineers, physicists, chemists, biologists, biomedical scientists and scholars working in the field of sustainable energy and materials.
Nanomaterials-Based Coatings: Fundamentals and Applications presents the fundamental concepts and applications of nanomaterial-based coatings in anticorrosion, antiwear, antibacterial, antifungal, self-cleaning, superhydrophobic, super hard, super heat resistance, solar reflective, photocatalytic and radar absorbing coatings. It is an important resource for those seeking to understand the underlying phenomenal and fundamental mechanisms through which nanoparticles interact with polymeric and metallic matrices to create stronger coatings. As nanomaterials-enforced coatings are smarter, stronger and more durable, the information listed in this book will helps readers understand their usage and further applications.
Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications sets out concepts and emerging applications of hybrid nanoparticles in biomedicine, antibacterial, energy storage and electronics. The hybridization of noble metals (Gold, Silver, Palladium and Platinum) with metal-oxide nanoparticles exhibits superior features when compared to individual nanoparticles. In some cases, metal oxides act as semiconductors, such as nano zinc oxide or titanium oxide nanoparticles, where their hybridization with silver nanoparticles, enhanced significantly their photocatalytic efficiency. The book highlights how such nanomaterials are used for practical applications.
This book provides comprehensive description of polymeric membranes in water treatment and remediation. It describes both the sustainability challenges and new opportunities to use membranes for water decontamination. It also discusses the environmental-related issues, challenges and advantages of using membrane-based systems and provides comprehensive description of various polymeric membranes, nanomaterials, biomolecules and their integrated systems for wastewater treatment. Various topics covered in this book are direct pressure-driven and osmotic-driven membrane processes, hybrid membrane processes (such as membrane bioreactors and integrating membrane separation with other processes), and resource recovery-oriented membrane-based processes. The book will be useful for students, researchers and professionals working in the area of materials science and environmental chemistry.
Nanomaterials for Air Remediation provides a comprehensive description of basic knowledge and current research progress in the field of air treatment using nanomaterials. The book explores how nanomaterials are used in various air remediation techniques, including advanced oxidation processes, biological processes, and filtration. It also covers their combined use as nanocatalysts, nanoantibiotics, nanoadsorbents, nanocontainers, nanofiltrations and nanosensors. Major challenges to using nanomaterials for improving air quality on a mass scale, both practical and regulatory, are also presented. This is an important resource for materials scientists and environmental engineers who are looking to understand how nanotechnology is used to enhance air quality.
Smart Nanocontainers explores the fundamental concepts and emerging applications of nanocontainers in biomedicine, pharmaceuticals and smart materials. In pharmaceuticals, nanocontainers have advantages over their micro-counterparts, including more efficient drug detoxification, higher intracellular uptake, better stability, less side effects and higher biocompatibility with tissue and cells. In materials science, such as coating technology, they help by making coatings smarter, stronger and more durable. This important reference will help anyone who wants to learn more on how nanocontainers are used to provide the controlled release of active agents, including their applications in smart coatings, corrosion, drug delivery, diagnosis, agri-food and gas storage.
Smart Nanoconcretes and Cement-Based Materials: Properties, Modelling and Applications explores the fundamental concepts and applications of smart nanoconcretes with self-healing, self-cleaning, photocatalytic, antibacterial, piezoelectrical, heating and conducting properties and how they are used in modern high-rise buildings, hydraulic engineering, highways, tunnels and bridges. This book is an important reference source for materials scientists and civil engineers who are looking to enhance the properties of smart nanomaterials to create stronger, more durable concrete.
|
You may like...
Introduction to Cataloging and…
Daniel N. Joudrey, Arlene G. Taylor, …
Hardcover
R3,144
Discovery Miles 31 440
Neuroscience of Aggression
Klaus A Miczek, Andreas Meyer-Lindenberg
Hardcover
R5,539
Discovery Miles 55 390
Managing Community Practice…
Sarah Banks, Hugh L. Butcher, …
Hardcover
R2,780
Discovery Miles 27 800
|