![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This fourth edition of a bestselling textbook has been extensively rewritten and expanded in line with the current Eurocodes. It presents the principles of the design of concrete elements and of complete structures, with practical illustrations of the theory. It explains the background to the Eurocode rules and goes beyond the core topics to cover the design of foundations, retaining walls, and water retaining structures. The text includes more than sixty worked out design examples and more than six hundred diagrams, plans, and charts. It suitable for civil engineering courses and is a useful reference for practicing engineers.
This established and popular textbook has now been extensively rewritten and expanded in line with the current Eurocodes. It presents the principles of the design of concrete elements and also the design of complete structures, and provides practical illustrations of the theory. It explains the background to the Eurocode rules and goes beyond the core topics to cover the design of foundations, retaining walls, water retaining structures. Reinforced Concrete Design to Eurocodes includes more than sixty worked out design examples and over six hundred diagrams, plans and charts. The chapters are fully revised to the Eurocodes and the most commonly encountered design problems in structural concrete are covered. It is written for students on civil engineering degree courses and undergraduate level and higher levels, and is also a useful reference for practising engineers.
Ordinary concrete is strong in compression but weak in tension. Even reinforced concrete, where steel bars are used to take up the tension that the concrete cannot resist, is prone to cracking and corrosion under low loads. Prestressed concrete is highly resistant to stress, and is used as a building material for bridges, tanks, shell roofs, floors, buildings, containment vessels for nuclear power plants and offshore oil platforms. With a wide range of benefits such as crack control, low rates of corrosion, thinner slabs, fewer joints and increased span length; prestressed concrete is a stronger, safer, more economical and more sustainable building material. The introduction of the Eurocodes has necessitated a new approach to the design of prestressed concrete structures and this book provides a comprehensive practical guide for professionals through each stage of the design process. Each chapter focuses on a specific aspect of design Fully consistent with Eurocode 2, and the associated parts of Eurocodes 1 and 8 Examples of challenges often encountered in professional practice worked through in full Detailed coverage of post-tensioned structures Extensive coverage of design of flat slabs using the finite element method Examples of pre-tensioned and post-tensioned bridge design An introduction to earthquake resistant design using EC 8 Examining the design of whole structures as well as the design of sections through many fully worked numerical examples which allow the reader to follow each step of the design calculations, this book will be of great interest to practising engineers who need to become more familiar with the use of the Eurocodes for the design of prestressed concrete structures. It will also be of value to university students with an interest in the practical design of w
Ordinary concrete is strong in compression but weak in tension. Even reinforced concrete, where steel bars are used to take up the tension that the concrete cannot resist, is prone to cracking and corrosion under low loads. Prestressed concrete is highly resistant to stress, and is used as a building material for bridges, tanks, shell roofs, floors, buildings, containment vessels for nuclear power plants and offshore oil platforms. With a wide range of benefits such as crack control, low rates of corrosion, thinner slabs, fewer joints and increased span length; prestressed concrete is a stronger, safer, more economical and more sustainable building material. The introduction of the Eurocodes has necessitated a new approach to the design of prestressed concrete structures and this book provides a comprehensive practical guide for professionals through each stage of the design process. Each chapter focuses on a specific aspect of design * Fully consistent with Eurocode 2, and the associated parts of Eurocodes 1 and 8 * Examples of challenges often encountered in professional practice worked through in full * Detailed coverage of post-tensioned structures * Extensive coverage of design of flat slabs using the finite element method * Examples of pre-tensioned and post-tensioned bridge design * An introduction to earthquake resistant design using EC 8 Examining the design of whole structures as well as the design of sections through many fully worked numerical examples which allow the reader to follow each step of the design calculations, this book will be of great interest to practising engineers who need to become more familiar with the use of the Eurocodes for the design of prestressed concrete structures. It will also be of value to university students with an interest in the practical design of whole structures.
This book presents a series of integrated computer programs in Fortran-90 for the dynamic analysis of structures, using the finite element method. Two dimensional continuum structures such as walls are covered along with skeletal structures such as rigid jointed frames and plane grids. Response to general dynamic loading of single degree freedom systems is calculated, and the author also examines multi degree of freedom systems (including earthquake analysis). Each chapter covers a different aspect of analytic theory and the corresponding program segments. It will be an essential tool for practising structural and civil engineers, whilst also being of interest to academics and postgraduate students.
|
![]() ![]() You may like...
Fifty Shades: 2-movie Collection
Dakota Johnson, Jamie Dornan, …
Blu-ray disc
R209
Discovery Miles 2 090
|