Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Since publication of the first edition of Sensor Array Signal Processing in 2000, the field it heralded has come of age. Sensor arrays helped usher in the age of wireless communication by meeting the increasing capacity requirements of ever growing wireless networks, but that is only one example of the number of uses served by this valuable technology across any number of fields. Extensively updated and expanded, Sensor Array Signal Processing, Second Edition covers a wide range of interrelated topics in array processing to provide an introduction to the field that one will not find in the literature. The book introduces new developments in the use of sensors in wireless networks and the use of distributed sensors for localization. It unravels layers of complexity to explore underlying basic principles of array signal processing, focusing on the common threads that exist in wavefield analysis, rather than on particular applications. Following an introduction to the basic equations governing different wavefields, the text provides updated coverage on current topics of interest. It analyzes various types of sensor configurations; focusing on those most useful for understanding array systems in practice - uniform linear and circular arrays. Fully updated with over 150 new pages, this new edition: Includes new chapters - emphasizing the use of sensor arrays in wireless communication and localization Adds new exercises and examples to the end of each chapter Provides information on emerging topics covering, distributed sensor array, multi-component sensors, space-time processing, azimuth/elevation estimation, wideband adaptive beamformation, and frequency invariant beamformation An invaluable tool for self-study, this book provides those working in or interested in medical imaging, astronomy, radar, communications, sonar, seismology or any field that studies propagating wavefields, with a highly accessible guide. It describes each concept in precise mathematical language complete with numerical examples, detailed illustrations, and practice exercises at the end of each chapter to reinforce concepts. As with the first edition, this volume also meets the needs of professors wishing to adopt the book for graduate-level courses in telecommunications and electrical engineering.
Localization of transmitters and receiving sensors is achieved by measuring radiation emitted by a source to a set of sensors, which are either on a definite pattern, known as an array, or one randomly located at irregular points, known as a distributed sensor array. This book discusses how to determine the position of sensors and transmit information to a central node, also known as the anchor node. Time of arrival, time difference of arrival, frequency time of arrival, and strength of received signal are also covered. The reader will learn effective algorithms and implementation, as well as numerical examples, with the inclusion of lab experiments. It discusses time synchronization, including the rotating laser beam to measure distance, in detail.
Localization of transmitters and receiving sensors is achieved by measuring radiation emitted by a source to a set of sensors, which are either on a definite pattern, known as an array, or one randomly located at irregular points, known as a distributed sensor array. This book discusses how to determine the position of sensors and transmit information to a central node, also known as the anchor node. Time of arrival, time difference of arrival, frequency time of arrival, and strength of received signal are also covered. The reader will learn effective algorithms and implementation, as well as numerical examples, with the inclusion of lab experiments. It discusses time synchronization, including the rotating laser beam to measure distance, in detail.
|
You may like...
|