Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Several nano-scale devices have emerged that are capable of analysing plant diseases, nutrient deficiencies and any other ailments that may affect food security in agro-ecosystems. It has been envisioned that smart delivery systems can be developed and utilised for better management of agricultural ecosystems. These systems could exhibit beneficial, multi-functional characteristics, which could be used to assess and also control habitat-imposed stresses to crops. Nanoparticle-mediated smart delivery systems can control the delivery of nutrients or bioactive and/or pesticide molecules in plants. It has been suggested that nano-particles in plants might help determine their nutrient status and could also be used as cures in agro-ecosystems. Further, to enhance soil and crop productivity, nanotechnology has been used to create and deliver nano fertilizers, which can be defined as nano-particles that directly help supply nutrients for plant growth and soil productivity. Nano-particles can be absorbed onto clay networks, leading to improved soil health and more efficient nutrient use by crops. Additionally, fertilizer particles can be coated with nano-particles that facilitate slow and steady release of nutrients, reducing loss of nutrients and enhancing their efficiency in agri-crops. Although the use of nanotechnology in agro-ecosystems is still in its early stages and needs to be developed further, nano-particle-mediated delivery systems are promising solutions for the successful management of agri-ecosystems. In this context, the book offers insights into nanotechnology in agro-ecosystems with reference to biogenic nanoparticles. It highlights the: * occurrence and diversity of Biogenic Nanoparticles * mechanistic approach involved in the synthesis of biogenic nanoparticles * synthesis of nanoparticles using photo-activation, and their fate in the soil ecosystem * potential applications of nanoparticles in agricultural systems * application and biogenic synthesis of gold nanoparticles and their characterization * impact of biogenic nanoparticles on biotic stress to plants * mechanistic approaches involved in the antimicrobial effects and cytotoxicity of biogenic nanoparticles * role of biogenic nanoparticles in plant diseases management * relevance of biological synthesized nanoparticles in the longevity of agricultural crops * design and synthesis of nano-biosensors for monitoring pollutants in water, soil and plant systems * applications of nanotechnology in agriculture with special refer to soil, water and plant sciences A useful resource for postgraduate and research students in the field of plant and agricultural sciences, it is also of interest to researchers working in nano and biotechnology.
Several nano-scale devices have emerged that are capable of analysing plant diseases, nutrient deficiencies and any other ailments that may affect food security in agro-ecosystems. It has been envisioned that smart delivery systems can be developed and utilised for better management of agricultural ecosystems. These systems could exhibit beneficial, multi-functional characteristics, which could be used to assess and also control habitat-imposed stresses to crops. Nanoparticle-mediated smart delivery systems can control the delivery of nutrients or bioactive and/or pesticide molecules in plants. It has been suggested that nano-particles in plants might help determine their nutrient status and could also be used as cures in agro-ecosystems. Further, to enhance soil and crop productivity, nanotechnology has been used to create and deliver nano fertilizers, which can be defined as nano-particles that directly help supply nutrients for plant growth and soil productivity. Nano-particles can be absorbed onto clay networks, leading to improved soil health and more efficient nutrient use by crops. Additionally, fertilizer particles can be coated with nano-particles that facilitate slow and steady release of nutrients, reducing loss of nutrients and enhancing their efficiency in agri-crops. Although the use of nanotechnology in agro-ecosystems is still in its early stages and needs to be developed further, nano-particle-mediated delivery systems are promising solutions for the successful management of agri-ecosystems. In this context, the book offers insights into nanotechnology in agro-ecosystems with reference to biogenic nanoparticles. It highlights the: * occurrence and diversity of Biogenic Nanoparticles * mechanistic approach involved in the synthesis of biogenic nanoparticles * synthesis of nanoparticles using photo-activation, and their fate in the soil ecosystem * potential applications of nanoparticles in agricultural systems * application and biogenic synthesis of gold nanoparticles and their characterization * impact of biogenic nanoparticles on biotic stress to plants * mechanistic approaches involved in the antimicrobial effects and cytotoxicity of biogenic nanoparticles * role of biogenic nanoparticles in plant diseases management * relevance of biological synthesized nanoparticles in the longevity of agricultural crops * design and synthesis of nano-biosensors for monitoring pollutants in water, soil and plant systems * applications of nanotechnology in agriculture with special refer to soil, water and plant sciences A useful resource for postgraduate and research students in the field of plant and agricultural sciences, it is also of interest to researchers working in nano and biotechnology.
Plants and the soil they grow in, are confronted with severe biotic and abiotic stresses viz. nutrient starvation, salt stress, drought, flooding, xenobiotic contamination, in order to sustain in an ecosystem. They also shape the microbial composition in their vicinity by modulating their secretions. This book discusses the pressing demand for novel and potential microorganisms to support an environment-friendly and cost-effective way of stress management in the plants. The book summarizes the processes and mechanisms involved in microbe-assisted plant and soil stress management. It discusses the challenges and opportunities in the application of microbial interactions in plant health. It describes in detail the nutrient dynamics of different soil systems. It includes important topics like agriculturally important genes and enzymes, rhizosphere modeling & engineering, genetically engineered bio-inoculants etc. It also talks about the application of next-generation technologies, omics and nano-based technologies. In the recent years, more than 50% of agricultural production relies on chemical fertilizers, leading to serious health issues and environmental concerns. This book provides natural solutions to these environmental concerns. This book is useful for researchers and students in the field of microbiology, agriculture, soil biology and plant sciences.
Nanosensors in Healthcare Diagnostics examines the role of nanosensors in clinical microbiology, their utilization in point-of-care sensing, and their application in clinical diagnostics. The book addresses the concept of nanosensors and their utilization in healthcare diagnostics. It covers the principles and mechanisms involved in the nanosensor-based diagnostics platforms. It also discusses various approaches and techniques used in preparation of nanosensors as well as the application of nanosensors in clinical diagnostics and their significance. Nanosensors in Healthcare Diagnostics is a useful reference for researchers, graduate students, and industry professionals studying nanosensors in biological and medical sciences.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|