Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This monograph describes ways of using trees and their byproducts in environmental protection technologies and methodologies throughout their lifecycles. The tree, the planet's main source of biomass, is an indispensable tool for sustainable technologies, and the authors present a holistic picture of how and why in this volume. The authors describe the indispensable role of the living tree in phytoremediation and biomonitoring and detail the relationship of the tree with its surrounding ecosystem. The direct and indirect relationships of a tree at its vegetation period with various components of the ecosystem (i.e. atmosphere, hydrosphere, lithosphere and soil) contribute to the role of a tree as the medium for integrating aerogenic and edaphic pollutants. Trees phytostabilize pollutants in their organisms and remove them from the soil. The ability of some species of trees to reflect the quality of the environment makes a basis for the environmental bioindication, while quantitative representation of the chemical composition of the surrounding environment allows for the use of trees in biomonitoring. Morphological features of trees (e.g. annual tree rings) allow us to observe environmental conditions in the past and retrospectively evaluate them. This monograph also details how wood products (e.g. biochar, chips, bark, etc.) of a tree after it has died are used in environmental technologies. Due to the specific morphological form and physical and chemical composition of wood products, they may be used as active materials in the technologies aimed at reducing pollution in an effective and sustainable manner.
This volume discusses how small bioreactors can produce useful biogas and compost from biodegradable waste. The authors identify which biodegradable wastes are optimal for small bioreactors, and how these choices can be used to increase bioreactor productivity. Additionally, readers will learn about how the amount and composition of biogas is estimated, the concentration of biodegradable waste that needs to be supplied to a bioreactor, the development of small bioreactors including the ratio of cost to the obtained benefits, and the nature of biodegradable wastes generated by both small farms and large food industry enterprises. The beginning chapters explain what biodegradable waste is, show how to predict how much waste an enterprise will produce, and elaborate the characteristics of the biogas which is generated from biodegradable waste in small bioreactors. Then the book discusses the types of small bioreactors and how to select the optimal bioreactor for a given case. Bioreactor performance is analyzed on both an economical and production efficiency basis, with experimental results provided on the quantity and quality of the biogas produced. The final chapters address how small bioreactors can be incorporated into small biogas plants, and the potential use of small bioreactors in countries with high demand for alternative energy using the case of Lithuania. The audience for this work includes specialists in biodegradable waste management and utilization enterprises, designers, and academics, researchers and students engaged in environmental engineering.
This monograph describes ways of using trees and their byproducts in environmental protection technologies and methodologies throughout their lifecycles. The tree, the planet's main source of biomass, is an indispensable tool for sustainable technologies, and the authors present a holistic picture of how and why in this volume. The authors describe the indispensable role of the living tree in phytoremediation and biomonitoring and detail the relationship of the tree with its surrounding ecosystem. The direct and indirect relationships of a tree at its vegetation period with various components of the ecosystem (i.e. atmosphere, hydrosphere, lithosphere and soil) contribute to the role of a tree as the medium for integrating aerogenic and edaphic pollutants. Trees phytostabilize pollutants in their organisms and remove them from the soil. The ability of some species of trees to reflect the quality of the environment makes a basis for the environmental bioindication, while quantitative representation of the chemical composition of the surrounding environment allows for the use of trees in biomonitoring. Morphological features of trees (e.g. annual tree rings) allow us to observe environmental conditions in the past and retrospectively evaluate them. This monograph also details how wood products (e.g. biochar, chips, bark, etc.) of a tree after it has died are used in environmental technologies. Due to the specific morphological form and physical and chemical composition of wood products, they may be used as active materials in the technologies aimed at reducing pollution in an effective and sustainable manner.
This volume discusses how small bioreactors can produce useful biogas and compost from biodegradable waste. The authors identify which biodegradable wastes are optimal for small bioreactors, and how these choices can be used to increase bioreactor productivity. Additionally, readers will learn about how the amount and composition of biogas is estimated, the concentration of biodegradable waste that needs to be supplied to a bioreactor, the development of small bioreactors including the ratio of cost to the obtained benefits, and the nature of biodegradable wastes generated by both small farms and large food industry enterprises. The beginning chapters explain what biodegradable waste is, show how to predict how much waste an enterprise will produce, and elaborate the characteristics of the biogas which is generated from biodegradable waste in small bioreactors. Then the book discusses the types of small bioreactors and how to select the optimal bioreactor for a given case. Bioreactor performance is analyzed on both an economical and production efficiency basis, with experimental results provided on the quantity and quality of the biogas produced. The final chapters address how small bioreactors can be incorporated into small biogas plants, and the potential use of small bioreactors in countries with high demand for alternative energy using the case of Lithuania. The audience for this work includes specialists in biodegradable waste management and utilization enterprises, designers, and academics, researchers and students engaged in environmental engineering.
|
You may like...
The Hobbit: An Unexpected Journey
Martin Freeman, Ian McKellen, …
Blu-ray disc
(4)
R44 Discovery Miles 440
|